1887

Abstract

OMZ1039, isolated from supragingival dental plaque, was found to harbour a prophage, PH15, whose excision could be induced by mitomycin treatment. Phage PH15 belongs to the . The complete genome sequence of PH15 was determined. The genome was 39 136 bp in size and contained 61 ORFs. The genome of PH15 was most similar in the structural module to the temperate bacteriophages MM1 and NIH1.1 from and , respectively. In strain OMZ1039, PH15 was found to reside as a prophage in the cysteinyl-tRNA gene. A plasmid, harbouring the site and the integrase gene downstream of a constitutive promoter, was capable of site-specific integration into the genomes of different oral streptococcal species. The phage endolysin was purified after expression in and found to inhibit growth of all strains tested and several different streptococcal species, including the pathogens , and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018739-0
2008-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/2970.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018739-0&mimeType=html&fmt=ahah

References

  1. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. E., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Banks D. J., Beres S. B., Musser J. M. 2002; The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 10:515–521
    [Google Scholar]
  4. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P. 2007; CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712
    [Google Scholar]
  5. Bartilson M., Marra A., Christine J., Asundi J. S., Schneider W. P., Hromockyj A. E. 2001; Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 39:126–135
    [Google Scholar]
  6. Blatny J. M., Ventura M., Rosenhaven E. M., Risøen P. A., Lunde M., Brüssow H., Nes I. F. 2003; Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage φLC3, and identification of the Cro-like protein ORF76. Mol Gen Genom 269:487–498
    [Google Scholar]
  7. Canchaya C., Proux C., Fournous G., Bruttin A., Brüssow H. 2003; Prophage genomics. Microbiol Mol Biol Rev 67:238–276
    [Google Scholar]
  8. Davies M. R., McMillan D. J., Van Domselaar G. H., Jones M. K., Sriprakash K. S. 2007; Phage 3396 from a Streptococcus dysgalactiae subsp. equisimilis pathovar may have its origins in Streptococcus pyogenes . J Bacteriol 189:2646–2652
    [Google Scholar]
  9. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V. other authors 2008; Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469
    [Google Scholar]
  10. Díaz E., Munthali M., Lünsdorf H., Höltje J.-V., Timmis K. N. 1996; The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli . Mol Microbiol 19:667–681
    [Google Scholar]
  11. Douglas C. W., Heath J., Hampton K. K., Preston F. E. 1993; Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol 39:179–182
    [Google Scholar]
  12. Fischetti V. A., Medaglini D., Pozzi G. 1996; Gram-positive commensal bacteria for mucosal vaccine delivery. Curr Opin Biotechnol 7:659–666
    [Google Scholar]
  13. Foley S., Bruttin A., Brüssow H. 2000; Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. J Virol 74:611–618
    [Google Scholar]
  14. Huang X., Madan A. 1999; CAP3: a DNA sequence assembly program. Genome Res 9:868–877
    [Google Scholar]
  15. Ikebe T., Wada A., Inagaki Y., Sugama K., Suzuki R., Tanaka D., Tamaru A., Fujinaga Y., Abe Y. other authors 2002; Dissemination of the phage-associated novel superantigen gene speL in recent invasive and noninvasive Streptococcus pyogenes M3/T3 isolates in Japan. Infect Immun 70:3227–3233
    [Google Scholar]
  16. Jensen P. R., Hammer K. 1998; The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87
    [Google Scholar]
  17. Kawamura Y., Whiley R. A., Shu S.-E., Ezaki T., Hardie J. M. 1999; Genetic approaches to the identification of the mitis group within the genus Streptococcus . Microbiology 145:2605–2613
    [Google Scholar]
  18. Kenny J. G., Leach S., de la Hoz A. B., Venema G., Kok J., Fitzgerald G. F., Nauta A., Alonso J. C., van Sinderen D. 2006; Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology 347:434–446
    [Google Scholar]
  19. Kilian M., Mikkelsen L., Henrichsen J. 1989; Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906. Int J Syst Bacteriol 39:471–484
    [Google Scholar]
  20. Kuramitsu H. K., He X., Lux R., Anderson M. H., Shi W. 2007; Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670
    [Google Scholar]
  21. Lee S. F. 2003; Oral colonization and immune responses to Streptococcus gordonii: potential use as a vector to induce antibodies against respiratory pathogens. Curr Opin Infect Dis 16:231–235
    [Google Scholar]
  22. Llull D., López R., García E. 2006; Skl, a novel choline-binding N-acetylmuramoyl-l-alanine amidase of Streptococcus mitis SK137 containing a CHAP domain. FEBS Lett 580:1959–1964
    [Google Scholar]
  23. Loeffler J. M., Fischetti V. A. 2006; Lysogeny of Streptococcus pneumoniae with MM1 phage: improved adherence and other phenotypic changes. Infect Immun 74:4486–4495
    [Google Scholar]
  24. Lucchini S., Desiere F., Brüssow H. 1999; Similarly organized lysogeny modules in temperate Siphoviridae from low GC content Gram-positive bacteria. Virology 263:427–435
    [Google Scholar]
  25. Lukashin A. V., Borodovsky M. 1998; GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115
    [Google Scholar]
  26. Macrina F. L., Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R. 1983; Novel shuttle plasmid vehicles for Escherichia- Streptococcus transgeneric cloning. Gene 25:145–150
    [Google Scholar]
  27. Mitchell J., Siboo I. R., Takamatsu D., Chambers H. F., Sullam P. M. 2007; Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB. Mol Microbiol 64:844–857
    [Google Scholar]
  28. Obregón V., García J. L., García E., López R., García P. 2003; Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae . J Bacteriol 185:2362–2368
    [Google Scholar]
  29. Petersen A., Josephsen J., Johnsen M. G. 1999; TPW22, a lactococcal temperate phage with a site-specific integrase closely related to Streptococcus thermophilus phage integrases. J Bacteriol 181:7034–7042
    [Google Scholar]
  30. Poyart C., Quesne G., Coulon S., Berche P., Trieu-Cuot P. 1998; Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol 36:41–47
    [Google Scholar]
  31. Romero P., López R., García E. 2004a; Characterization of LytA-like N-acetylmuramoyl-l-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J Bacteriol 186:8229–8239
    [Google Scholar]
  32. Romero P., López R., García E. 2004b; Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 322:239–252
    [Google Scholar]
  33. Schleifer K. H., Kilpper-Bälz R. 1987; Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10:1–19
    [Google Scholar]
  34. Sheehan M. M., Stanley E., Fitzgerald G. F., van Sinderen D. 1999; Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus . Appl Environ Microbiol 65:569–577
    [Google Scholar]
  35. Siboo I. R., Bensing B. A., Sullam P. M. 2003; Genomic organization and molecular characterization of SM1, a temperate bacteriophage of Streptococcus mitis . J Bacteriol 185:6968–6975
    [Google Scholar]
  36. Tanzer J. M., Thompson A. M., Grant L. P., Vickerman M. M., Scannapieco F. A. 2008; Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Arch Oral Biol 53:133–140
    [Google Scholar]
  37. Tettelin H., Masignani V., Cieslewicz M. J., Eisen J. A., Peterson S., Wessels M. R., Paulsen I. T., Nelson K. E., Margarit I. other authors 2002; Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae . Proc Natl Acad Sci U S A 99:12391–12396
    [Google Scholar]
  38. van der Ploeg J. R. 2005; Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989
    [Google Scholar]
  39. van der Ploeg J. R. 2007; Genome sequence of Streptococcus mutans bacteriophage M102. FEMS Microbiol Lett 275:130–138
    [Google Scholar]
  40. Vickerman M. M., Iobst S., Jesionowski A. M., Gill S. R. 2007; Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189:7799–7807
    [Google Scholar]
  41. Wang B.-Y., Kuramitsu H. K. 2005; Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii . Appl Environ Microbiol 71:354–362
    [Google Scholar]
  42. Williams K. P. 2002; Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 30:866–875
    [Google Scholar]
  43. Xu P., Alves J. M., Kitten T., Brown A., Chen Z., Ozaki L. S., Manque P., Ge X., Serrano M. G. other authors 2007; Genome of the opportunistic pathogen Streptococcus sanguinis . J Bacteriol 189:3166–3175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018739-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018739-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error