1887

Abstract

Analyses of microbial genome sequences have revealed numerous examples of ‘cryptic’ or ‘orphan’ biosynthetic gene clusters, with the potential to direct the production of novel, structurally complex natural products. This article summarizes the various methods that have been developed for discovering the products of cryptic biosynthetic gene clusters in microbes and gives an account of my group's discovery of the products of two such gene clusters in the model actinomycete M145. These discoveries hint at new mechanisms, roles and specificities for natural product biosynthetic enzymes. Our efforts to elucidate these are described. The identification of new secondary metabolites of raises the question: what is their biological function? Progress towards answering this question is also summarized.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018523-0
2008-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1555.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018523-0&mimeType=html&fmt=ahah

References

  1. Austin, M. B. & Noel, J. P. ( 2003; ). The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20, 79–110.[CrossRef]
    [Google Scholar]
  2. Austin, M. B., Saito, T., Bowman, M. E., Haydock, S., Kato, A., Moore, B. S., Kay, R. R. & Noel, J. P. ( 2006; ). Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat Chem Biol 2, 494–502.[CrossRef]
    [Google Scholar]
  3. Banskota, A. H., McAlpine, J. B., Sorensen, D., Aouidate, M., Piraee, M., Alarco, A.-M., Omura, S., Shiomi, K., Farnet, C. M. & Zazopoulos, E ( 2006a; ). Isolation and identification of three new 5-alkenyl-3,3(2H)-furanones from two Streptomyces species using a genomic screening approach. J Antibiot 59, 168–176.[CrossRef]
    [Google Scholar]
  4. Banskota, A. H., McAlpine, J. B., Sorensen, D., Ibrahim, A., Aouidate, M., Piraee, M., Alarco, A.-M., Farnet, C. M. & Zazopoulos, E. ( 2006b; ). Genomic analyses lead to novel secondary metabolites. Part 3 ECO-0501, a novel antibacterial of a new class. J Antibiot 59, 533–542.[CrossRef]
    [Google Scholar]
  5. Barona-Gómez, F., Wong, U., Giannakopulos, A. E., Derrick, P. J. & Challis, G. L. ( 2004; ). Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126, 16282–16283.[CrossRef]
    [Google Scholar]
  6. Barona-Gómez, F., Lautru, S., Francou, F.-X., Leblond, P., Pernodet, J.-L. & Challis, G. L. ( 2006; ). Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152, 3355–3366.[CrossRef]
    [Google Scholar]
  7. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A.-M., Challis, G. L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H. & other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  8. Bergmann, S., Schuemann, J., Scherlach, K., Lange, C., Brakhage, A. A. & Hertweck, C. ( 2007; ). Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3, 213–217.[CrossRef]
    [Google Scholar]
  9. Bok, J. W., Hoffmeister, D., Maggio-Hall, L. A., Renato, M., Glasner, J. D. & Keller, N. P. ( 2006; ). Genomic mining for Aspergillus natural products. Chem Biol 13, 31–37.[CrossRef]
    [Google Scholar]
  10. Caffrey, P. ( 2003; ). Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases. ChemBioChem 4, 654–657.[CrossRef]
    [Google Scholar]
  11. Chain, E., Florey, H. W., Gardner, A. D., Heatley, N. G., Jennings, M. A., Orr-Ewing, J. & Sanders, A. G. ( 1940; ). Penicillin as a chemotherapeutic agent. Lancet 2, 226–228.
    [Google Scholar]
  12. Challis, G. L. ( 2006; ). Engineering E. coli to produce nonribosomal peptide antibiotics. Nat Chem Biol 2, 398–400.[CrossRef]
    [Google Scholar]
  13. Challis, G. L. ( 2008; ). Genome mining for new natural product discovery. J Med Chem 51, in press
    [Google Scholar]
  14. Challis, G. L. & Ravel, J. ( 2000; ). Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187, 111–114.[CrossRef]
    [Google Scholar]
  15. Challis, G. L., Ravel, J. & Townsend, C. A. ( 2000; ). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211–224.[CrossRef]
    [Google Scholar]
  16. Chen, H., Tseng, C. C., Hubbard, B. K. & Walsh, C. T. ( 2001; ). Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine. Proc Natl Acad Sci U S A 98, 14901–14906.[CrossRef]
    [Google Scholar]
  17. Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R. & other authors ( 2007; ). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25, 1007–1014.[CrossRef]
    [Google Scholar]
  18. Corre, C. & Challis, G. L. ( 2007; ). Heavy tools for genome mining. Chem Biol 14, 7–9.[CrossRef]
    [Google Scholar]
  19. de Bruijn, I., de Kock, M. J. D., Yang, M., de Waard, P., van Beek, T. A. & Raaijmakers, J. M. ( 2007; ). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63, 417–428.[CrossRef]
    [Google Scholar]
  20. Drake, E. J., Cao, J., Qu, J., Shah, M. B., Straubinger, R. M. & Gulick, A. M. ( 2007; ). The 1.8 Å crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. J Biol Chem 282, 20425–20434.[CrossRef]
    [Google Scholar]
  21. Erb, T. J., Berg, I. A., Brecht, V., Mueller, M., Fuchs, G. & Alber, B. E. ( 2007; ). Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 104, 10631–10636.[CrossRef]
    [Google Scholar]
  22. Fischbach, M. A. & Walsh, C. T. ( 2006; ). Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106, 3468–3496.[CrossRef]
    [Google Scholar]
  23. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A. & other authors ( 1995; ). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  24. Fleming, A. ( 1929; ). On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10, 226–236.
    [Google Scholar]
  25. Funa, N., Ohnishi, Y., Fujii, I., Shibuya, M., Ebizuka, Y. & Horinouchi, S. ( 1999; ). A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899.[CrossRef]
    [Google Scholar]
  26. Gross, H. ( 2007; ). Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75, 267–277.[CrossRef]
    [Google Scholar]
  27. Gross, H., Stockwell, V. O., Henckels, M. D., Nowak-Thompson, B., Loper, J. E. & Gerwick, W. H. ( 2007; ). The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14, 53–63.[CrossRef]
    [Google Scholar]
  28. Grüschow, S., Buchholz, T. J., Seufert, W., Dordick, J. S. & Sherman, D. H. ( 2007; ). Substrate profile analysis and ACP-mediated acyl transfer in Streptomyces coelicolor type III polyketide synthases. ChemBioChem 8, 863–868.[CrossRef]
    [Google Scholar]
  29. Günter, K., Toupet, C. & Schupp, T. ( 1993; ). Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus: repressor-binding site and homology to the diphtheria toxin gene promoter. J Bacteriol 175, 3295–3302.
    [Google Scholar]
  30. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. ( 2003; ). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541–1546.[CrossRef]
    [Google Scholar]
  31. Haydock, S. F., Aparicio, J. F., Molnar, I., Schwecke, T., Khaw, L. E., Konig, A., Marsden, A. F., Galloway, I. S., Staunton, J. & Leadlay, P. F. ( 1995; ). Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA : acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett 374, 246–248.[CrossRef]
    [Google Scholar]
  32. Haynes, S. W. & Challis, G. L. ( 2007; ). Non-linear enzymatic logic in natural product modular mega-synthases and synthetases. Curr Opin Drug Discov Devel 10, 203–218.
    [Google Scholar]
  33. Hojati, Z., Milne, C., Harvey, B., Gordon, L., Borg, M., Flett, F., Wilkinson, B., Sidebottom, P. J., Rudd, B. A. M. & other authors ( 2002; ). Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9, 1175–1187.[CrossRef]
    [Google Scholar]
  34. Hornung, A., Bertazzo, M., Dziarnowski, A., Schneider, K., Welzel, K., Wohlert, S.-E., Holzenkaempfer, M., Nicholson, G. J., Bechthold, A. & other authors ( 2007; ). A genomic screening approach to the structure-guided identification of drug candidates from natural sources. ChemBioChem 8, 757–766.[CrossRef]
    [Google Scholar]
  35. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. & Omura, S. ( 2003; ). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21, 526–531.[CrossRef]
    [Google Scholar]
  36. Izumikawa, M., Shipley, P. R., Hopke, J. N., O'Hare, T., Xiang, L., Noel, J. P. & Moore, B. S. ( 2003; ). Expression and characterization of the type III polyketide synthase 1,3,6,8-tetrahydroxynaphthalene synthase from Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30, 510–515.[CrossRef]
    [Google Scholar]
  37. Kadi, N., Oves-Costales, D., Barona-Gomez, F. & Challis, G. L. ( 2007; ). A new family of oligomerisation macrocyclisation biocatalysts. Nat Chem Biol 3, 652–685.[CrossRef]
    [Google Scholar]
  38. Keller, N. P., Turner, G. & Bennett, J. W. ( 2005; ). Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3, 937–947.[CrossRef]
    [Google Scholar]
  39. Koehn, F. E. & Carter, G. T. ( 2005; ). The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4, 206–220.[CrossRef]
    [Google Scholar]
  40. Larsen, N. A., Lin, H., Wei, R., Fischbach, M. A. & Walsh, C. T. ( 2006; ). Structural characterization of enterobactin hydrolase IroE. Biochemistry 45, 10184–10190.[CrossRef]
    [Google Scholar]
  41. Lautru, S., Deeth, R. J., Bailey, L. & Challis, G. L. ( 2005; ). Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1, 265–269.[CrossRef]
    [Google Scholar]
  42. Lautru, S., Oves-Costales, D., Pernodet, J.-L. & Challis, G. L. ( 2007; ). MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology 153, 1405–1412.[CrossRef]
    [Google Scholar]
  43. Li, T.-L., Choroba, O. W., Hong, H., Williams, D. H. & Spencer, J. B. ( 2001; ). Biosynthesis of the vancomycin group of antibiotics: characterisation of a type III polyketide synthase in the pathway to (S)-3,5-dihydroxyphenylglycine. Chem Commun 2156–2157.
    [Google Scholar]
  44. Li, Y., Florova, G. & Reynolds, K. A. ( 2005; ). Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH). J Bacteriol 187, 3795–3799.[CrossRef]
    [Google Scholar]
  45. Lin, H., Fischbach, M. A., Liu, D. R. & Walsh, C. T. ( 2005; ). In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127, 11075–11084.[CrossRef]
    [Google Scholar]
  46. Lin, X., Hopson, R. & Cane, D. E. ( 2006; ). Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sesquiterpene synthase. J Am Chem Soc 128, 6022–6023.[CrossRef]
    [Google Scholar]
  47. McAlpine, J. B., Bachmann, B. O., Piraee, M., Tremblay, S., Alarco, A.-M., Zazopoulos, E. & Farnet, C. M. ( 2005; ). Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68, 493–496.[CrossRef]
    [Google Scholar]
  48. Miethke, M. & Marahiel, M. A. ( 2007; ). Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71, 413–451.[CrossRef]
    [Google Scholar]
  49. Minowa, Y., Araki, M. & Kanehisa, M. ( 2007; ). Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J Mol Biol 368, 1500–1517.[CrossRef]
    [Google Scholar]
  50. Miyanaga, A., Funa, N., Awakawa, T. & Horinouchi, S. ( 2008; ). Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis. Proc Natl Acad Sci U S A 105, 871–876.[CrossRef]
    [Google Scholar]
  51. Muller, G. & Raymond, K. N. ( 1984; ). Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160, 304–312.
    [Google Scholar]
  52. Nguyen, T., Ishida, K., Jenke-Kodama, H., Dittmann, E., Gurgui, C., Hochmuth, T., Taudien, S., Platzer, M., Hertweck, C. & Piel, J. ( 2008; ). Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26, 225–233.[CrossRef]
    [Google Scholar]
  53. Oliynyk, M., Samborskyy, M., Lester, J. B., Mironenko, T., Scott, N., Dickens, S., Haydock, S. F. & Leadlay, P. F. ( 2007; ). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL2338. Nat Biotechnol 25, 447–453.[CrossRef]
    [Google Scholar]
  54. Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H. & other authors ( 2001; ). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98, 12215–12220.[CrossRef]
    [Google Scholar]
  55. Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi, D. V., DeBoy, R. T., Seshadri, R., Ren, Q. & other authors ( 2005; ). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23, 873–878.[CrossRef]
    [Google Scholar]
  56. Petersen, F., Zähner, H., Metzger, J. W., Freund, S. & Hummel, R. P. ( 1993; ). Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J Antibiot 46, 1126–1138.[CrossRef]
    [Google Scholar]
  57. Pfeifer, V., Nicholson, G. J., Ries, J., Recktenwald, J., Schefer, A. B., Shawky, R. M., Schroder, J., Wohlleben, W. & Pelzer, S. ( 2001; ). A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. J Biol Chem 276, 38370–38377.[CrossRef]
    [Google Scholar]
  58. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D. H. ( 2005; ). Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33, 5799–5808.[CrossRef]
    [Google Scholar]
  59. Reid, R., Piagentini, M., Rodriguez, E., Ashley, G., Viswanathan, N., Carney, J., Santi, D. V., Hutchinson, C. R. & McDaniel, R. ( 2003; ). A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42, 72–79.[CrossRef]
    [Google Scholar]
  60. Song, L., Barona-Gomez, F., Corre, C., Xiang, L., Udwary, D. W., Austin, M. B., Noel, J. P., Moore, B. S. & Challis, G. L. ( 2006; ). Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128, 14754–14755.[CrossRef]
    [Google Scholar]
  61. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. ( 1999; ). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493–505.[CrossRef]
    [Google Scholar]
  62. Sudek, S., Haygood, M. G., Youssef, D. T. A. & Schmidt, E. W. ( 2006; ). Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 72, 4382–4387.[CrossRef]
    [Google Scholar]
  63. Tohyama, S., Eguchi, T., Dhakal, R. P., Akashi, T., Otsuka, M. & Kakinuma, K. ( 2004; ). Genome-inspired search for new antibiotics. Isolation and structure determination of new 28-membered polyketide macrolactones, halstoctacosanolides A and B, from Streptomyces halstedii HC34. Tetrahedron 60, 3999–4005.[CrossRef]
    [Google Scholar]
  64. Udwary, D. W., Zeigler, L., Asolkar, R. N., Singan, V., Lapidus, A., Fenical, W., Jensen, P. R. & Moore, B. S. ( 2007; ). Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A 104, 10376–10381.[CrossRef]
    [Google Scholar]
  65. Wilkinson, B. & Micklefield, J. ( 2007; ). Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3, 379–386.[CrossRef]
    [Google Scholar]
  66. Zhao, B., Lin, X., Lei, L., Lamb, D. C., Kelly, S. L., Waterman, M. R. & Cane, D. E. ( 2008; ). Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 283, 8183–8189.[CrossRef]
    [Google Scholar]
  67. Zirkle, R., Black, T. A., Gorlach, J., Ligon, J. M. & Molnar, I. ( 2004; ). Analysis of a 108-kb region of the Saccharopolyspora spinosa genome covering the obscurin polyketide synthase locus. DNA Seq 15, 123–134.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018523-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018523-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error