1887

Abstract

To study the influence of DNA curvature and DNA-binding proteins, which interact with curved DNA on bacterial promoters, we constructed two sets of promoter variants in which a synthetic DNA-bending module was fused at defined distances and angular orientations with respect to the transcription start sites. The distance between the synthetic binding site centre and the transcription start site of the different constructs varied by up to 20 bp, corresponding to almost two complete helical B-DNA turns. The rRNA promoters P1 and P2 were selected as target promoters. While in its natural context P1 depends on upstream curved DNA and several transcription factors that bind to this region, promoter P2 is not preceded by curved DNA, nor is it believed to be directly regulated by transcription factors. transcription measurements of both promoters in the absence of transcription factors varied with the phase of the curved upstream DNA element, underlining the importance of DNA conformation to promoter efficiency. Specific binding of H-NS and LRP to the curved DNA element was demonstrated by gel shift and footprint analysis. Binding affinity was not notably altered for the different distance variants. We demonstrated that the two proteins acted as repressors for both promoters. The extent of H-NS-mediated repression for both promoters did not vary strongly with the phasing of the upstream binding module. In contrast, LRP-dependent repression showed a clear dependence on the angular orientation of the constructs. Phasing-dependent repression is very distinct for P2 but only rudimentary for the P1 promoter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018408-0
2008-09-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2546.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018408-0&mimeType=html&fmt=ahah

References

  1. Afflerbach H., Schröder O., Wagner R.. 1999; Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli rrnB P1 promoter activity. J Mol Biol286:339–353
    [Google Scholar]
  2. Aiyar S. E., McLeod S. M., Ross W., Hirvonen C. A., Thomas M. S., Johnson R. C., Gourse R. L.. 2002; Architecture of FIS-activated transcription complexes at the Escherichia coli rrnB P1 promoters. J Mol Biol316:501–516
    [Google Scholar]
  3. Beloin C., Jeusset J., Revet B., Mirambeau G., Le Hegarat F., Le Cam E.. 2003; Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J Biol Chem278:5333–5342
    [Google Scholar]
  4. Bokal A. J., Ross W., Gaal T., Johnson R. C., Gourse R. L.. 1997; Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter. EMBO J16:154–162
    [Google Scholar]
  5. Bouffartigues E., Buckle M., Badaut C., Tracers A., Rimsky S.. 2007; H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol14:441–448
    [Google Scholar]
  6. Burgess R. R., Jendrisak J. J.. 1975; A procedure for the rapid, large scale purification of E. coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA cellulose chromatography. Biochemistry14:4634–4638
    [Google Scholar]
  7. Cellai S., Mangiarotti L., Vannini N., Naryshkin N., Kortkhonjia E., Ebright R. H., Rivetti C.. 2007; Upstream promoter sequences and α CTD mediate stable DNA wrapping within the RNA polymerase–promoter open complex. EMBO Rep8:271–278
    [Google Scholar]
  8. Cui Y., Wang Q., Stormo G. D., Calvo J. M.. 1995; A consensus sequence for binding of LRP to DNA. J Bacteriol177:4872–4880
    [Google Scholar]
  9. Dame R. T.. 2005; The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol56:858–870
    [Google Scholar]
  10. Dame R. T., Wyman C., Wurm R., Wagner R., Goosen N.. 2002; Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at rrnB P1. J Biol Chem277:2146–2150
    [Google Scholar]
  11. Davis C. A., Capp M. W., Record M. T. Jr, Saecker R. M.. 2005; The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A102:285–290
    [Google Scholar]
  12. Dlakic M., Harrington R. E.. 1998; DIAMOD: display and modeling of DNA bending. Bioinformatics14:326–331
    [Google Scholar]
  13. Estrem S. T., Gaal T., Ross W., Gourse R. L.. 1998; Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A95:9761–9766
    [Google Scholar]
  14. Gabrielian A., Pongor S.. 1996; Correlation of intrinsic DNA curvature with DNA property periodicity. FEBS Lett393:65–68
    [Google Scholar]
  15. Geiselmann J.. 1997; The role of DNA conformation in transcriptional initiation and activation in Escherichia coli . Biol Chem378:599–607
    [Google Scholar]
  16. Gonzalez N., Wiggs J., Chamberlin M. J.. 1977; A simple procedure for resolution of E. coli RNA polymerase holoenzyme from core polymerase. Arch Biochem Biophys182:404–408
    [Google Scholar]
  17. Gosink K. K., Ross W., Leirmo S., Osuna R., Finkel S. E., Johnson R. C., Gourse R. L.. 1993; DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1. J Bacteriol175:1580–1589
    [Google Scholar]
  18. Hillebrand A., Wurm R., Menzel A., Wagner R.. 2005; The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem386:523–534
    [Google Scholar]
  19. Hirvonen C. A., Ross W., Wozniak C. E., Marasco E., Anthony J. R., Aiyar S. E., Newburn V. H., Gourse R. L.. 2001; Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli . J Bacteriol183:6305–6314
    [Google Scholar]
  20. Hsu L. M.. 1996; Quantitative parameters for promoter clearance. Methods Enzymol273:59–71
    [Google Scholar]
  21. Jáuregui R., Abreu-Goodger C., Moreno-Hagelsieb G., Collado-Vides J., Merino E.. 2003; Conservation of DNA curvature signals in regulatory regions of prokaryotic genes. Nucleic Acids Res31:6770–6777
    [Google Scholar]
  22. Leirmo S., Gourse R. L.. 1991; Factor-independent activation of Escherichia coli rRNA transcription. I. Kinetic analysis of the roles of the upstream activator region and supercoiling on transcription of the rrnB P1 promoter in vitro . J Mol Biol220:555–568
    [Google Scholar]
  23. Liebig B., Wagner R.. 1995; Effects of different growth conditions on the in vivo activity of the tandem Escherichia coli ribosomal RNA promoters P1 and P2. Mol Gen Genet249:328–335
    [Google Scholar]
  24. Lindahl L., Zengel J. M.. 1986; Ribosomal genes in Escherichia coli . Annu Rev Genet20:297–326
    [Google Scholar]
  25. Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T.. 2006; The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol156:262–272
    [Google Scholar]
  26. Maxam A. M., Gilbert W.. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol65:499–560
    [Google Scholar]
  27. Meng W., Belyaeva T., Savery N. J., Busby S. J. W., Ross W., Gaal T., Gourse R. L., Thomas M. S.. 2001; UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase α subunit linker. Nucleic Acids Res29:4166–4178
    [Google Scholar]
  28. Mitchell J. E., Zheng D., Busby S. J., Minchin S. D.. 2003; Identification and analysis of ‘extended −10’ promoters in Escherichia coli . Nucleic Acids Res31:4689–4695
    [Google Scholar]
  29. Murray H. D., Appleman J. A., Gourse R. L.. 2003; Regulation of the Escherichia coli rrnB P2 promoter. J Bacteriol185:28–34
    [Google Scholar]
  30. Muskhelishvili G., Travers A. A., Heumann H., Kahmann R.. 1995; FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. EMBO J14:1446–1452
    [Google Scholar]
  31. Olivares-Zavaleta N., Jauregui R., Merino E.. 2006; Genome analysis of Escherichia coli promoter sequences evidences that DNA static curvature plays a more important role in gene transcription than has previously been anticipated. Genomics87:329–337
    [Google Scholar]
  32. Plaskon R. R., Wartell R. M.. 1987; Sequence distributions associated with DNA-curvature are found upstream of strong E. coli promoters. Nucleic Acids Res15:785–796
    [Google Scholar]
  33. Pul Ü., Wurm R., Lux B., Meltzer M., Menzel A., Wagner R.. 2005; LRP and H-NS – cooperative partners for transcription regulation at E. coli rRNA promoters. Mol Microbiol58:864–876
    [Google Scholar]
  34. Pul Ü., Wurm R., Wagner R.. 2007; The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol366:900–915
    [Google Scholar]
  35. Rochman M., Blot N., Dyachenko M., Glaser G., Travers A., Muskhelishvili G.. 2004; Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Mol Microbiol53:143–152
    [Google Scholar]
  36. Ross W., Thompson J. F., Newlands J. T., Gourse R. L.. 1990; E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo . EMBO J9:3733–3742
    [Google Scholar]
  37. Schröder O., Wagner R.. 2000; The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J Mol Biol298:737–748
    [Google Scholar]
  38. Shao Y., Feldman-Cohen L. S., Osuna R.. 2008; Functional characterization of the Escherichia coli Fis–DNA binding sequence. J Mol Biol376:771–785
    [Google Scholar]
  39. Shultzaberger R. K., Chen Z., Lewis K. A., Schneider T. D.. 2007; Anatomy of Escherichia coli σ 70 promoters. Nucleic Acids Res35:771–788
    [Google Scholar]
  40. Thompson J. F., Landy A.. 1988; Empirical estimation of protein-induced DNA bending angles: applications to λ site-specific recombination complexes. Nucleic Acids Res16:9687–9705
    [Google Scholar]
  41. Travers A., Muskhelishvili G.. 1998; DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol279:1027–1043
    [Google Scholar]
  42. Vicente M., Kushner S. R., Garrido T., Aldea M.. 1991; The role of the ‘gearbox’ in the transcription of essential genes. Mol Microbiol5:2085–2091
    [Google Scholar]
  43. Wu H. M., Crothers D. M.. 1984; The locus of sequence-directed and protein-induced DNA bending. Nature308:509–513
    [Google Scholar]
  44. Yamada H., Muramatsu S., Mizuno T.. 1990; An Escherichia coli protein that preferentially binds to sharply curved DNA. J Biochem108:420–425
    [Google Scholar]
  45. Zacharias M., Göringer H. U., Wagner R.. 1992; Analysis of the Fis-dependent and Fis-independent transcription activation mechanism of the E. coli ribosomal RNA P1 promoter. Biochemistry31:2621–2628
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018408-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018408-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error