1887

Abstract

X14 is a facultative lithoautotroph that conserves energy from the oxidation of nitrite () and fixes carbon dioxide (CO) as its sole source of carbon. The availability of the X14 genome sequence initiated a re-examination of its mixotrophic and organotrophic potential, as genes encoding three flavin-dependent oxidases were identified that may function to oxidize lactate, providing energy and carbon for growth. The response of to - and -lactate in the presence (mixotrophy) and absence (organotrophy) of was examined. -Lactate did not support organotrophic growth or stimulate mixotrophic growth. In contrast, -lactate enhanced the growth rate and yield of in the presence of , and served as the sole carbon and energy source for growth in the absence of with ammonium as the sole nitrogen source. Lithoautotrophically grown cells immediately consumed -lactate, suggesting that a lactate metabolic pathway is constitutively expressed. Nevertheless, a physiological adaptation to lactate occurred, as -lactate-grown cells consumed and assimilated lactate at a faster rate than -grown cells, and the -lactate-dependent O uptake rate was significantly greater in cells grown either organotrophically or mixotrophically compared with cells grown lithoautotrophically. Although -lactate was assimilated and metabolized to CO in the presence or absence of , exposure to atmospheric CO or the addition of 0.75 mM sodium carbonate was required for mixotrophic growth and for optimum organotrophic growth on -lactate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018085-0
2008-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2473.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018085-0&mimeType=html&fmt=ahah

References

  1. Bock, E. ( 1976; ). Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis. Arch Microbiol 108, 305–312.[CrossRef]
    [Google Scholar]
  2. Bock, E., Sundermeyer-Klinger, H. & Stackebrandt, E. ( 1983; ). New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch Microbiol 136, 281–284.[CrossRef]
    [Google Scholar]
  3. Bock, E., Koops, H. P. & Harms, H. ( 1986; ). Cell biology of nitrifiers. In Nitrification, pp. 17–38. Edited by J. I. Prosser. Oxford: IRL Press.
  4. Bock, E., Koops, H. P., Harms, H. & Ahlers, B. ( 1991; ). The Biochemistry of nitrifying organisms. In Variations in Autotrophic Life, pp. 171–200. Edited by J. M. Shively and L. L. Barton. San Diego, CA: Academic Press.
  5. Delwiche, C. C. & Feinstein, M. S. ( 1965; ). Carbon and energy sources for the nitrifying autotroph Nitrobacter. J Bacteriol 90, 102–107.
    [Google Scholar]
  6. Dubbs, J. M. & Tabita, F. R. ( 2004; ). Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 28, 353–376.[CrossRef]
    [Google Scholar]
  7. Garvie, E. I. ( 1980; ). Bacterial lactate dehydrogenases. Microbiol Rev 44, 106–139.
    [Google Scholar]
  8. Grobler, J., Bauer, F., Subden, R. E. & Van Vuuren, H. J. ( 1995; ). The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11, 1485–1491.[CrossRef]
    [Google Scholar]
  9. Hageman, R. H. & Hucklesby, D. P. ( 1971; ). Nitrate reductase from higher plants. Methods Enzymol 23, 491–503.
    [Google Scholar]
  10. Harris, S., Ebert, A., Schutze, E., Diercks, M., Bock, E. & Shively, J. M. ( 1988; ). Two different genes and gene products for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCOase) in Nitrobacter hamburgensis. FEMS Microbiol Lett 49, 267–271.[CrossRef]
    [Google Scholar]
  11. Horikiri, S., Aizawa, Y., Kai, T., Amachi, S., Shinoyama, H. & Fujii, T. ( 2004; ). Electron acquisition system constructed from an NAD-independent d-lactate dehydrogenase and cytochrome c 2 in Rhodopseudomonas palustris No. 7. Biosci Biotechnol Biochem 68, 516–522.[CrossRef]
    [Google Scholar]
  12. Ida, S. & Alexander, M. ( 1965; ). Permeability of Nitrobacter agilis to organic compounds. J Bacteriol 90, 151–156.
    [Google Scholar]
  13. Kirstein, K. & Bock, E. ( 1993; ). Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch Microbiol 160, 447–453.[CrossRef]
    [Google Scholar]
  14. Kirstein, K. O., Bock, E., Miller, D. J. & Nicholas, D. J. D. ( 1986; ). Membrane-bound b-type cytochromes in Nitrobacter. FEMS Microbiol Lett 36, 63–67.[CrossRef]
    [Google Scholar]
  15. Laanbroek, H. J., Bodelier, P. & Gerards, S. ( 1994; ). Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Arch Microbiol 161, 156–162.[CrossRef]
    [Google Scholar]
  16. Lord, J. M. ( 1972; ). Glycolate oxidoreductase in Escherichia coli. Biochim Biophys Acta 267, 227–237.[CrossRef]
    [Google Scholar]
  17. Markwell, J. P. & Lascelles, J. ( 1978; ). Membrane-bound, pyridine nucleotide-independent l-lactate dehydrogenase of Rhodopseudomonas sphaeroides. J Bacteriol 133, 593–600.
    [Google Scholar]
  18. Nelson, D. C., Waterbury, J. B. & Jannasch, H. W. ( 1982; ). Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol 133, 172–177.[CrossRef]
    [Google Scholar]
  19. Sewell, D. L. & Aleem, M. I. ( 1969; ). Generation of reducing power in chemosynthesis. V. The mechanism of pyridine nucleotide reduction by nitrite in the chemoautotroph Nitrobacter agilis. Biochim Biophys Acta 172, 467–475.[CrossRef]
    [Google Scholar]
  20. Shively, J. M., van Keulen, G. & Meijer, W. G. ( 1998; ). Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52, 191–230.[CrossRef]
    [Google Scholar]
  21. Smith, A. J. & Hoare, D. S. ( 1968; ). Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy”. J Bacteriol 95, 844–855.
    [Google Scholar]
  22. Spieck, E., Muller, S., Engel, A., Mandelkow, E., Patel, H. & Bock, E. ( 1996; ). Two-dimensional structure of membrane-bound nitrite oxidoreductase from Nitrobacter hamburgensis. J Struct Biol 117, 117–123.[CrossRef]
    [Google Scholar]
  23. Starkenburg, S. R., Larimer, F. W., Stein, L. Y., Klotz, M. G., Chain, P. S., Sayavedra-Soto, L. A., Poret-Peterson, A. T., Gentry, M. E., Arp, D. J. & other authors ( 2008; ). Complete genome sequence of Nitrobacter hamburgensis X14 and a comparative genomic analysis of species within the genus Nitrobacter. Appl Environ Microbiol 74, 2852–2863.[CrossRef]
    [Google Scholar]
  24. Steinmuller, W. & Bock, E. ( 1976; ). Growth of Nitrobacter in the presence of organic matter. I. Mixotrophic growth. Arch Microbiol 108, 299–304.[CrossRef]
    [Google Scholar]
  25. Steinmuller, W. & Bock, E. ( 1977; ). Enzymatic studies on autotrophically, mixotrophically and heterotrophically grown Nitrobacter agilis with special reference to nitrite oxidase. Arch Microbiol 115, 51–54.[CrossRef]
    [Google Scholar]
  26. Sundermeyer-Klinger, H., Meyer, W., Warninghoff, B. & Bock, E. ( 1984; ). Membrane-bound nitrite-oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch Microbiol 140, 153–158.[CrossRef]
    [Google Scholar]
  27. Tabita, F. R. ( 1988; ). Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52, 155–189.
    [Google Scholar]
  28. Tandon, S. P. & Mishra, M. M. ( 1968; ). Effect of some organic acids on nitrification by Nitrobacter agilis. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 122, 401–404.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018085-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018085-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error