1887

Abstract

Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017608-0
2008-08-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2169.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017608-0&mimeType=html&fmt=ahah

References

  1. Abbad-Andaloussi, S., Lagnel, C., Warzywoda, M. & Monot, F. ( 2003; ). Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzyme Microb Technol 32, 446–454.[CrossRef]
    [Google Scholar]
  2. Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J. & Gírio, F. M. ( 2005; ). Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotechnol 120, 199–208.[CrossRef]
    [Google Scholar]
  3. Arenskötter, M., Bröker, D. & Steinbüchel, A. ( 2004; ). Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70, 3195–3204.[CrossRef]
    [Google Scholar]
  4. Armstrong, S. M., Sankey, B. M. & Voordouw, G. ( 1995; ). Conversion of dibenzothiophene to biphenyl by sulfate-reducing bacteria isolated from oil field production facilities. Biotechnol Lett 17, 1133–1136.[CrossRef]
    [Google Scholar]
  5. Armstrong, S. M., Sankey, B. M. & Voordouw, G. ( 1997; ). Evaluation of sulfate-reducing bacteria for desulfurizing bitumen or its fractions. Fuel 76, 223–227.[CrossRef]
    [Google Scholar]
  6. Bahrami, A., Shojaosadati, S. A. & Mohebali, G. ( 2001; ). Biodegradation of dibenzothiophene by thermophilic bacteria. Biotechnol Lett 23, 899–901.[CrossRef]
    [Google Scholar]
  7. Caro, A., Boltes, K., Leton, P. & Garcıa-Calvo, E. ( 2007; ). Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35, 191–197.[CrossRef]
    [Google Scholar]
  8. Chang, J. H., Chang, Y. K., Cho, K.-S. & Chang, H. N. ( 2000; ). Desulfurization of model and diesel oils by resting cells of Gordona sp. Biotechnol Lett 22, 193–196.[CrossRef]
    [Google Scholar]
  9. Chang, J. H., Kim, Y. J., Lee, B. H., Cho, K.-S., Rye, H. W., Chang, Y. K. & Chang, H. N. ( 2001; ). Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol Prog 17, 876–880.[CrossRef]
    [Google Scholar]
  10. Coco, W. M., Levinston, W. E., Crist, M. J., Hektor, H. J., Darzins, A., Pienkos, P. T., Squires, C. H. & Monticello, D. J. ( 2001; ). DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19, 354–359.[CrossRef]
    [Google Scholar]
  11. Denis-Larose, C., Labbe, D., Nergron, H., Jones, A. M., Greer, C. W., Al-Hawari, J., Grossman, M. J., Sankey, B. M. & Lau, P. C. K. ( 1997; ). Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci. Appl Environ Microbiol 63, 2915–2919.
    [Google Scholar]
  12. Denome, S. A., Olson, E. S. & Young, K. D. ( 1993a; ). Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59, 2837–2843.
    [Google Scholar]
  13. Denome, S. A., Stanley, D. C., Olson, E. S. & Young, K. D. ( 1993b; ). Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175, 6890–6901.
    [Google Scholar]
  14. Denome, S. A., Oldfield, C., Nash, L. J. & Young, K. D. ( 1994; ). Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176, 6707–6716.
    [Google Scholar]
  15. Duarte, G. F., Rosado, A. S., Seldin, L., De Araujo, W. & Van Elsas, J. D. ( 2001; ). Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67, 1052–1062.[CrossRef]
    [Google Scholar]
  16. Egorova, M. ( 2003; ). Study of aspects of deep hydrodesulfurization by means of model reactions. PhD thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.
  17. EPA ( 1995; ). Profile of the petroleum refining industry. EPA Office of Compliance Sector Notebook Project, September 1995, no. EPA/310-R-95-013, http://www.epa.gov/Compliance/resources/publications/assistance/sectors/notebooks/petrefsn.pdf.
  18. Fang, X. X., Zhang, Y. L., Luo, L. L., Xu, P., Chen, Y. L., Zhou, H. & Hai, L. ( 2006; ). Organic sulfur removal from catalytic diesel oil by hydrodesulfurization combined with biodesulfurization. Mod Chem Ind 26, 234–238. (Chinese journal)
    [Google Scholar]
  19. Finnerty, W. R. ( 1993; ). Organic sulfur biodesulfurization in non-aqueous media. Fuel 72, 1631–1634.[CrossRef]
    [Google Scholar]
  20. Folsom, B. R., Schieche, D. R., DiGrazia, P. M., Werner, J. & Palmer, S. ( 1999; ). Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65, 4967–4972.
    [Google Scholar]
  21. Furuya, T., Takahashi, S., Iwasaki, Y., Ishii, Y., Kino, K. & Kirimura, K. ( 2005; ). Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. J Biosci Bioeng 99, 577–585.[CrossRef]
    [Google Scholar]
  22. Gallagher, J. R., Olson, E. S. & Stanley, D. C. ( 1993; ). Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107, 31–36.[CrossRef]
    [Google Scholar]
  23. Gallardo, M. E., Ferrández, A., De Lorenzo, V., García, J. L. & Díaz, E. ( 1997; ). Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179, 7156–7160.
    [Google Scholar]
  24. Gray, K. A., Pogrebinsky, O. S., Mrachko, G. T., Lei, X., Monticello, D. J. & Squires, C. H. ( 1996; ). Molecular mechnisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14, 1705–1709.[CrossRef]
    [Google Scholar]
  25. Gray, K. A., Squires, C. H. & Monticello, D. J. ( 1998; ). DszD utilization in desulfurization of DBT by Rhodococcus sp. IGTS8. US Patent no. 5 846 813.
  26. Gray, K. A., Mrachko, G. T. & Squires, C. H. ( 2003; ). Biodesulfurization of fossil fuels. Curr Opin Microbiol 6, 229–235.[CrossRef]
    [Google Scholar]
  27. Grossman, M. J., Lee, M. K., Prince, R. C., Garrett, K. K., George, G. N. & Pickering, I. J. ( 1999; ). Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65, 181–188.
    [Google Scholar]
  28. Grossman, M. J., Lee, M. K., Prince, R. C., Minak-Bernero, V., George, G. N. & Pickering, I. J. ( 2001; ). Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 67, 1949–1952.[CrossRef]
    [Google Scholar]
  29. Gunam, I. B. W., Yaku, Y., Hirano, M., Yamamura, K., Tomita, F., Sone, T. & Asano, K. ( 2006; ). Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng 101, 322–327.[CrossRef]
    [Google Scholar]
  30. Guobin, S., Jianmin, X., Huaiying, Z. & Huizhou, L. ( 2005; ). Deep desulfurization of hydrodesulfurized diesel oil by Pseudomonas delafieldii R-8. J Chem Technol Biotechnol 80, 420–424.[CrossRef]
    [Google Scholar]
  31. Guobin, S., Huaiying, Z., Jianmin, X., Guo, C., Wangliang, L. & Huizhou, L. ( 2006; ). Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem Eng J 27, 305–309.[CrossRef]
    [Google Scholar]
  32. Gupta, N., Roychoudhury, P. K. & Deb, J. K. ( 2005; ). Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66, 356–366.[CrossRef]
    [Google Scholar]
  33. Hirasawa, K., Ishii, Y., Kobayashi, M., Koizumi, K. & Maruhashi, K. ( 2001; ). Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65, 239–246.[CrossRef]
    [Google Scholar]
  34. Honda, H., Sugiyama, H., Saito, I. & Kobayashi, T. ( 1998; ). High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation. J Ferment Bioeng 85, 334–338.[CrossRef]
    [Google Scholar]
  35. Ishii, Y., Konishi, J., Okada, H., Hirasawa, K., Onaka, T. & Suzuki, M. ( 2000; ). Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11–2. Biochem Biophys Res Commun 270, 81–88.[CrossRef]
    [Google Scholar]
  36. Ishii, Y., Kozaki, S., Furuya, T., Kino, K. & Kirimura, K. ( 2005; ). Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50, 63–70.[CrossRef]
    [Google Scholar]
  37. Jia, X., Wen, J., Sun, Z., Caiyin, Q. & Xie, S. ( 2006; ). Modeling of DBT biodegradation behaviors by resting cells of Gordonia sp. WQ-01 and its mutant in oil–water dispersions. Chem Eng Sci 61, 1987–2000.[CrossRef]
    [Google Scholar]
  38. Kaufman, E. N., Borole, A. P., Shong, R., Sides, J. L. & Juengst, C. ( 1999; ). Sulfur specificity in the bench-scale biological desulfurization of crude oil by Rhodococcus IGTS8. J Chem Technol Biotechnol 74, 1000–1004.[CrossRef]
    [Google Scholar]
  39. Kayser, K. J., Bielaga-Jones, B. A., Jackowski, K., Odusan, O. & Kilbane, J. J. ( 1993; ). Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139, 3123–3129.[CrossRef]
    [Google Scholar]
  40. Kayser, K. J., Cleveland, L., Park, H., Kwak, J., Kolhatkar, A. & Kilbane, J. J. ( 2002; ). Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59, 737–746.[CrossRef]
    [Google Scholar]
  41. Kertesz, M. A. ( 2000; ). Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24, 135–175.
    [Google Scholar]
  42. Kilbane, J. J. ( 1990; ). Sulfur-specific metabolism of organic compounds. Resour Conserv Recycling 69, 590–596.
    [Google Scholar]
  43. Kilbane, J. J. ( 1991; ). Bacterial produced extracts and enzymes for cleavage of organic C-S bonds. European Patent no. 0 445 896 A2.
  44. Kilbane, J. J. ( 2006; ). Microbial biocatalyst development to upgrade fossil fuels. Curr Opin Biotechnol 17, 305–314.[CrossRef]
    [Google Scholar]
  45. Kilbane, J. J. & Le Borgne, S. ( 2004; ). Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals. In Petroleum Biotechnology, Developments and Perspectives, pp. 29–65. Edited by R. Vazquez-Duhalt & R. Quintero-Ramirez. Amsterdam: Elsevier.
  46. Kim, B. H., Kim, H. Y., Kim, T. S. & Park, D. H. ( 1995; ). Selectivity of desulfurization activity of Desulfovibrio desulfuricans M6 on different petroleum products. Fuel Process Technol 43, 87–94.[CrossRef]
    [Google Scholar]
  47. Kirimura, K., Furuya, T., Nishii, Y., Ishii, Y., Kino, K. & Usami, S. ( 2001; ). Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91, 262–266.[CrossRef]
    [Google Scholar]
  48. Kirimura, K., Furuya, T., Sato, R., Ishii, Y., Kino, K. & Usami, S. ( 2002; ). Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl Environ Microbiol 68, 3867–3872.[CrossRef]
    [Google Scholar]
  49. Kobayashi, M., Onaka, T., Ishii, Y., Konishi, J., Takaki, M., Okada, H., Ohta, Y., Koizumi, K. & Suzuki, M. ( 2000; ). Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol Lett 187, 123–126.[CrossRef]
    [Google Scholar]
  50. Kodama, K., Umehara, K., Shimizu, K., Nakatani, S., Minoda, Y. & Yamada, K. ( 1973; ). Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37, 45–50.[CrossRef]
    [Google Scholar]
  51. Konishi, J., Ishii, Y., Onaka, T., Okumura, K. & Suzuki, M. ( 1997; ). Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63, 3164–3169.
    [Google Scholar]
  52. Konishi, J., Ishi, Y., Okumura, K. & Suzuki, M. ( 1999; ). High-temperature desulfurization by microorganisms. US Patent no. 5 925 560.
  53. Konishi, J., Ishi, Y., Okumura, K. & Suzuki, M. ( 2000; ). High-temperature desulfurization by microorganisms. US Patent no. 6 130 081.
  54. Le Borgne, S. & Quintero, R. ( 2003; ). Biotechnological processes for the refining of petroleum. Fuel Process Technol 81, 155–169.[CrossRef]
    [Google Scholar]
  55. Lee, M. K., Senius, J. D. & Grossman, M. J. ( 1995; ). Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol 61, 4362–4366.
    [Google Scholar]
  56. Lee, I. S., Bae, H., Ryu, H. W., Cho, K. & Chang, Y. K. ( 2005; ). Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 cells. Biotechnol Prog 21, 781–785.
    [Google Scholar]
  57. Lei, B. & Tu, S. ( 1996; ). Gene expression, purification and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J Bacteriol 178, 5699–5705.
    [Google Scholar]
  58. Li, M. Z., Squires, C. H., Monticello, D. J. & Childs, J. D. ( 1996; ). Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J Bacteriol 178, 6409–6418.
    [Google Scholar]
  59. Li, F. L., Xu, P., Ma, C. Q., Luo, L. L. & Wang, X. S. ( 2003; ). Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223, 301–307.[CrossRef]
    [Google Scholar]
  60. Li, W., Wang, M., Chen, H., Chen, J. & Shi, Y. ( 2006; ). Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28, 1175–1179.[CrossRef]
    [Google Scholar]
  61. Li, G. Q., Ma, T., Li, S. S., Li, H., Liang, F. L. & Liu, R. L. ( 2007a; ). Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71, 849–854.[CrossRef]
    [Google Scholar]
  62. Li, Y.-G., Ma, J., Zhang, Q. Q., Wang, C. S. & Chen, Q. ( 2007b; ). Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus erythropolis NCC-1. Chin J Chem 25, 400–405.[CrossRef]
    [Google Scholar]
  63. Li, F., Zhang, Z., Feng, J., Cai, X. & Xu, P. ( 2007c; ). Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127, 222–228.[CrossRef]
    [Google Scholar]
  64. Linguist, L. & Pacheco, M. ( 1999; ). Enzyme-based diesel desulfurization process offers energy, CO2 advantages. Oil Gas J 97, 45–48.
    [Google Scholar]
  65. Lizama, H. M., Wilkins, L. A. & Scott, T. C. ( 1995; ). Dibenzothiophene sulfur can serve as sole electron acceptor during growth by sulfate reducing bacteria. Biotechnol Lett 17, 113–116.[CrossRef]
    [Google Scholar]
  66. Ma, C. Q., Feng, J. H., Zeng, Y. Y., Cai, X. F., Sun, B. P., Zhang, Z. B., Blankespoor, H. D. & Xu, P. ( 2006a; ). Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65, 165–169.[CrossRef]
    [Google Scholar]
  67. Ma, T., Li, G., Li, J., Liang, F. & Liu, R. ( 2006b; ). Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28, 1095–1100.[CrossRef]
    [Google Scholar]
  68. Maghsoudi, S., Vossoughi, M., Kheirolomoom, A., Tanaka, E. & Katoh, S. ( 2001; ). Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem Eng J 8, 151–156.[CrossRef]
    [Google Scholar]
  69. Marcelis, C. ( 2002; ). Anaerobic biodesulfurization of thiophenes. PhD thesis, Wageningen University, The Netherlands.
  70. Marcelis, C. L. M., van Leeuwen, M., Polderman, H. G., Janssen, A. J. H. & Lettinga, G. ( 2003; ). Model description of dibenzothiophene mass transfer in oil/water dispersions with respect to biodesulfurization. Biochem Eng J 16, 253–264.[CrossRef]
    [Google Scholar]
  71. Matsubara, T., Ohshiro, T., Nishina, Y. & Izumi, Y. ( 2001; ). Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67, 1179–1184.[CrossRef]
    [Google Scholar]
  72. Matsui, T., Hirasawa, K., Koizumi, K., Maruhashi, K. & Kurane, R. ( 2001a; ). Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnol Lett 23, 1715–1718.[CrossRef]
    [Google Scholar]
  73. Matsui, T., Hirasawa, K., Konishi, J., Tanaka, Y., Maruhashi, K. & Kurane, R. ( 2001b; ). Microbial desulphurisation of alkylated dibenzothiophene and alkylated benzothiophene by recombinant Rhodococcus sp. strain T09. Appl Microbiol Biotechnol 56, 196–200.[CrossRef]
    [Google Scholar]
  74. Matsui, T., Noda, K., Tanaka, Y., Maruhashi, K. & Kurane, R. ( 2002; ). Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Curr Microbiol 45, 240–244.[CrossRef]
    [Google Scholar]
  75. McFarland, B. L. ( 1999; ). Biodesulfurization. Curr Opin Microbiol 2, 257–264.[CrossRef]
    [Google Scholar]
  76. Mingfang, L., Zhongxuan, G., Jianmin, X., Huizhou, L. & Jiayong, C. ( 2003; ). Microbial desulfurization of model and straight-run oils. J Chem Technol Biotechnol 78, 873–876.[CrossRef]
    [Google Scholar]
  77. Mohebali, G., Ball, A. S., Rasekh, B. & Kaytash, A. ( 2007a; ). Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40, 578–584.[CrossRef]
    [Google Scholar]
  78. Mohebali, G., Ball, A. S., Kaytash, A. & Rasekh, B. ( 2007b; ). Stabilization of water/gas oil emulsions by desulfurizing cells of Gordonia alkanivorans RIPI90A. Microbiology 153, 1573–1581.[CrossRef]
    [Google Scholar]
  79. Mohebali, G., Ball, A. S., Kaytash, A. & Rasekh, B. ( 2008; ). Dimethyl sulfoxide (DMSO) as an alternative sulfur source to DBT for the production of desulfurizing resting cells of Gordonia alkanivorans RIPI90A. Microbiology 154, 878–885.[CrossRef]
    [Google Scholar]
  80. Monticello, D. J. ( 1996; ). Multistage process for deep desulfurization of a fossil fuel. US Patent no. 5 510 265.
  81. Monticello, D. J. ( 1998; ). Riding the fossil fuel biodesulfurization wave. Chemtech 28, 38–45.
    [Google Scholar]
  82. Monticello, D. J. ( 2000; ). Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11, 540–546.[CrossRef]
    [Google Scholar]
  83. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Maruhashi, K. & Tanaka, A. ( 2001; ). Long term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl Microbiol Biotechnol 55, 374–378.[CrossRef]
    [Google Scholar]
  84. Noda, K., Watanabe, K. & Maruhashi, K. ( 2002; ). Cloning of Rhodococcus promoter using a transposon for dibenzothiophene biodesulfurization. Biotechnol Lett 25, 1875–1888.
    [Google Scholar]
  85. Nomura, N., Takada, M., Okada, H., Shinohara, Y., Nakajima-Kambe, T., Nakahara, T. & Uchiyama, H. ( 2005; ). Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J Biosci Bioeng 100, 398–402.[CrossRef]
    [Google Scholar]
  86. Ohshiro, T. & Izumi, Y. ( 1999; ). Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63, 1–9.[CrossRef]
    [Google Scholar]
  87. Ohshiro, T., Hine, Y. & Izumi, Y. ( 1994; ). Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118, 341–344.[CrossRef]
    [Google Scholar]
  88. Ohshiro, T., Hirata, T. & Izumi, Y. ( 1995; ). Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44, 249–252.[CrossRef]
    [Google Scholar]
  89. Ohshiro, T., Hirata, T. & Izumi, Y. ( 1996a; ). Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol Lett 142, 65–70.[CrossRef]
    [Google Scholar]
  90. Ohshiro, T., Suzuki, K. & Izumi, Y. ( 1996b; ). Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-1. J Ferment Bioeng 81, 121–124.[CrossRef]
    [Google Scholar]
  91. Ohshiro, T., Aoi, Y., Torii, K. & Izumi, Y. ( 2002; ). Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1. Appl Microbiol Biotechnol 59, 649–657.[CrossRef]
    [Google Scholar]
  92. Ohshiro, T., Ishii, Y., Matsubara, T., Ueda, K., Izumi, Y., Kino, K. & Kirimura, K. ( 2005; ). Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100, 266–273.[CrossRef]
    [Google Scholar]
  93. Okada, H., Nomura, N., Nakahara, T. & Maruhashi, K. ( 2002; ). Analysis of dibenzothiophene metabolic pathway in Mycobacterium sp. G3. J Biosci Bioeng 93, 491–497.[CrossRef]
    [Google Scholar]
  94. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E. S. & Kulpa, C. F. ( 1997; ). Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143, 2961–2973.[CrossRef]
    [Google Scholar]
  95. Onaka, T., Konishi, J., Ishii, Y. & Maruhashi, K. ( 2001; ). Desulfurization characteristics of thermophilic Paenibacillus sp. strain A11-2 against asymmetrically alkylated dibenzothiophenes. J Biosci Bioeng 92, 193–196.[CrossRef]
    [Google Scholar]
  96. Pacheco, M. A. ( 1999; ). Recent advances in biodesulfurization (BDS) of diesel fuel. Paper presented at the NPRA Annual Meeting, San Antonio, TX, 21–23 March 1999.
  97. Patel, S. B., Kilbane, J. J., II & Webster, D. A. ( 1997; ). Biodesulfurization of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8. J Chem Technol Biotechnol 69, 100–106.[CrossRef]
    [Google Scholar]
  98. Piddington, C. S., Kovacevich, B. R. & Rambosek, J. ( 1995; ). Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61, 468–475.
    [Google Scholar]
  99. Pope, C. A., III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K. & Thurston, G. D. ( 2002; ). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141.[CrossRef]
    [Google Scholar]
  100. Prince, R. C. & Grossman, M. J. ( 2003; ). Substrate preferences in biodesulfurization of diesel range fuels by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 69, 5833–5838.[CrossRef]
    [Google Scholar]
  101. Rambosek, J., Piddington, C. S., Kovacevich, B. R., Young, K. D. & Denome, S. ( 1999; ). Recombinant DNA encoding a desulfurization biocatalyst. US Patent no. 5 879 914.
  102. Rashidi, L., Mohebali, G., Towfighi darian, J. & Rasekh, B. ( 2006; ). Biodesulfurization of dibenzothiophene and its alkylated derivatives through the sulfur-specific pathway by the bacterium RIPI-S81. Afr J Biotechnol 5, 351–356.
    [Google Scholar]
  103. Rhee, S. K., Chang, J. H., Chang, Y. K. & Chang, H. N. ( 1998; ). Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64, 2327–2331.
    [Google Scholar]
  104. Serbolisca, L., de Ferra, F. & Margarit, I. ( 1999; ). Manipulation of the DNA coding for the desulfurizing activity in a new isolate of Arthrobacter sp. Appl Microbiol Biotechnol 52, 122–126.[CrossRef]
    [Google Scholar]
  105. Shennan, J. L. ( 1996; ). Microbial attack on sulphur-containing hydrocarbons: implications for the biodesulphurisation of oils and coals. J Chem Technol Biotechnol 67, 109–123.[CrossRef]
    [Google Scholar]
  106. Soleimani, M., Bassi, A. & Margaritis, A. ( 2007; ). Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25, 570–596.[CrossRef]
    [Google Scholar]
  107. Song, C. ( 2003; ). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86, 211–263.[CrossRef]
    [Google Scholar]
  108. Squires, C. H., Ji, W., Xi, L., Ortego, B., Pogrebinsky, O. S., Gray, K. A. & Childs, J. D. ( 1998; ). Method of desulfurization of fossil fuel with flavoprotein. US Patent no. 5 733 773.
  109. Squires, C. H., Ji, W., Xi, L., Ortego, B. C., Pogrebinsky, O. C., Gray, K. A. & Childs, J. D. ( 1999; ). Method of desulfurization of fossil fuel with flavoprotein. US Patent no. 5 985 650.
  110. Srinivasaraghavan, K., Sarma, P. M. & Lal, B. ( 2006; ). Comparative analysis of phenotypic and genotypic characteristics of two desulfurizing bacterial strains, Mycobacterium phlei SM120-1 and Mycobacterium phlei GTIS10. Lett Appl Microbiol 42, 483–489.[CrossRef]
    [Google Scholar]
  111. Swaty, T. E. ( 2005; ). Global refining industry trends: the present and future. Hydrocarbon ProcessingSeptember 2005, 35–46.
    [Google Scholar]
  112. Tao, F., Yu, B., Xu, P. & Ma, C. Q. ( 2006; ). Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72, 4604–4609.[CrossRef]
    [Google Scholar]
  113. Van Afferden, M., Tappe, D., Beyer, M., Truper, H. G. & Klein, J. ( 1993; ). Biochemical mechanisms for the desulphurisation of coal-relevant organic sulphur compounds. Fuel 72, 635–643.
    [Google Scholar]
  114. Van Hamme, J. D., Singh, A. & Ward, O. P. ( 2003; ). Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67, 503–549.[CrossRef]
    [Google Scholar]
  115. Wang, P. & Krawiec, S. ( 1996; ). Kinetic analysis of desulfurization of dibenzothiophene by Rhodococcus erythropolis in batch and fed-batch cultures. Appl Environ Microbiol 62, 1670–1675.
    [Google Scholar]
  116. Watanabe, K., Noda, K. & Maruhashi, K. ( 2003; ). Enhanced desulfurization in a transposon-mutation strain of Rhodococcus erythropolis. Biotechnol Lett 25, 1299–1304.[CrossRef]
    [Google Scholar]
  117. Xi, L., Squires, C. H., Monticello, D. J. & Childs, J. D. ( 1997; ). A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230, 73–75.[CrossRef]
    [Google Scholar]
  118. Yoshikawa, O., Ishii, Y., Koizumi, K., Ohshiro, T., Izumi, Y. & Maruhashi, K. ( 2002; ). Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2–5-1 by feeding ethanol and sulfur components. J Biosci Bioeng 94, 447–452.[CrossRef]
    [Google Scholar]
  119. Yu, B., Xu, P., Shi, Q. & Ma, C. ( 2006; ). Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72, 54–58.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017608-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017608-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2169 - 2183

List of bacterial strains that can selectively desulfurize DBT, its derivatives, or a range of sulfur compounds in several crude oil fractions via the 4S pathway [ PDF] (32 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error