1887

Abstract

is required for nutrient-dependent regulation of ribosome biogenesis and cell size. A mutant deleted for shows specific traits, including a slow growth phenotype, especially when growing on glucose. We recently analysed the physiology of an Δ mutant and its isogenic reference strain in chemostat cultures. This approach was successful in revealing the effects of nutrients on the activity of Sfp1 independent of growth rate-related feedback. In the present work we exposed carbon-limited cultures of an Δ mutant and its reference strain to sudden glucose excess. This allowed us to study the effect of deletion on cell physiology when the cells are forced to exploit their maximum growth potential; this is similar to what happens in shake-flask cultures but with no bias due to growth rate differences. We show that nutrients differentiallly affect the role of Sfp1 in cell-size modulation and in transcriptional control. Furthermore, we report that while Sfp1 is necessary for the efficient glucose-dependent regulation of ribosome biogenesis genes, it is not required for the proper induction of ribosomal protein genes in response to glucose excess. Finally, our data suggest a role for Sfp1 in the regulation of glycolysis, further underlining its involvement in the network that links ribosome biogenesis and cell metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017392-0
2008-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1686.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017392-0&mimeType=html&fmt=ahah

References

  1. Ahuatzi, D., Riera, A., Pelaez, R., Herrero, P. & Moreno, F. ( 2007; ). Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282, 4485–4493.[CrossRef]
    [Google Scholar]
  2. Alberghina, L. & Porro, D. ( 1993; ). Quantitative flow cytometry: analysis of protein distributions in budding yeast. A mini-review. Yeast 9, 815–823.[CrossRef]
    [Google Scholar]
  3. Alberghina, L., Smeraldi, C., Ranzi, B. M. & Porro, D. ( 1998; ). Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. J Bacteriol 180, 3864–3872.
    [Google Scholar]
  4. Berger, A. B., Decourty, L., Badis, G., Nehrbass, U., Jacquier, A. & Gadal, O. ( 2007; ). Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol 27, 8015–8026.[CrossRef]
    [Google Scholar]
  5. Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. ( 2003; ). The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278, 3265–3274.[CrossRef]
    [Google Scholar]
  6. Cipollina, C., Alberghina, L., Porro, D. & Vai, M. ( 2005; ). SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast 22, 385–399.[CrossRef]
    [Google Scholar]
  7. Cipollina, C., van den Brink, J., Daran-Lapujade, P., Pronk, J. T., Vai, M. & de Winde, J. H. ( 2008; ). Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology 154, 337–346.[CrossRef]
    [Google Scholar]
  8. Crespo, J. L. & Hall, M. N. ( 2002; ). Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66, 579–591.[CrossRef]
    [Google Scholar]
  9. Daran-Lapujade, P., Rossell, S., van Gulik, W. M., Luttik, M. A., de Groot, M. J., Slijper, M., Heck, A. J., Daran, J. M., de Winde, J. H. & other authors ( 2007; ). The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104, 15753–15758.[CrossRef]
    [Google Scholar]
  10. de Jong-Gubbels, P., Vanrolleghem, P., Heijnen, S., van Dijken, J. P. & Pronk, J. T. ( 1995; ). Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 11, 407–418.[CrossRef]
    [Google Scholar]
  11. DeSalle, L. M. & Pagano, M. ( 2001; ). Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett 490, 179–189.[CrossRef]
    [Google Scholar]
  12. Estruch, F. ( 2000; ). Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24, 469–486.[CrossRef]
    [Google Scholar]
  13. Fatica, A. & Tollervey, D. ( 2002; ). Making ribosomes. Curr Opin Cell Biol 14, 313–318.[CrossRef]
    [Google Scholar]
  14. Fingerman, I., Nagaraj, V., Norris, D. & Vershon, A. K. ( 2003; ). Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell 2, 1061–1068.[CrossRef]
    [Google Scholar]
  15. Flick, K., Chapman-Shimshoni, D., Stuart, D., Guaderrama, M. & Wittenberg, C. ( 1998; ). Regulation of cell size by glucose is exerted via repression of the CLN1 promoter. Mol Cell Biol 18, 2492–2501.
    [Google Scholar]
  16. Futcher, B. ( 1996; ). Cyclins and the wiring of the yeast cell cycle. Yeast 12, 1635–1646.[CrossRef]
    [Google Scholar]
  17. Gasch, A. P. & Werner-Washburne, M. ( 2002; ). The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2, 181–192.[CrossRef]
    [Google Scholar]
  18. Griffioen, G., Laan, R. J., Mager, W. H. & Planta, R. J. ( 1996; ). Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiology 142, 2279–2287.[CrossRef]
    [Google Scholar]
  19. Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W., Hannett, N. M., Tagne, J. B., Reynolds, D. B. & other authors ( 2004; ). Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.[CrossRef]
    [Google Scholar]
  20. Hoskisson, P. A. & Hobbs, G. ( 2005; ). Continuous culture – making a comeback? Microbiology 151, 3153–3159.[CrossRef]
    [Google Scholar]
  21. Hughes, J. D., Estep, P. W., Tavazoie, S. & Church, G. M. ( 2000; ). Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296, 1205–1214.[CrossRef]
    [Google Scholar]
  22. Jansen, M. L., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P. & Pronk, J. T. ( 2005; ). Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology 151, 1657–1669.[CrossRef]
    [Google Scholar]
  23. Johnston, M. ( 1999; ). Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15, 29–33.[CrossRef]
    [Google Scholar]
  24. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. ( 2002; ). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400.[CrossRef]
    [Google Scholar]
  25. Jorgensen, P., Rupes, I., Sharom, J. R., Schneper, L., Broach, J. R. & Tyers, M. ( 2004; ). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18, 2491–2505.[CrossRef]
    [Google Scholar]
  26. Klein, C. & Struhl, K. ( 1994; ). Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14, 1920–1928.
    [Google Scholar]
  27. Knijnenburg, T. A., de Winde, J. H., Daran, J. M., Daran-Lapujade, P., Pronk, J. T., Reinders, M. J. & Wessels, L. F. ( 2007; ). Exploiting combinatorial cultivation conditions to infer transcriptional regulation. BMC Genomics 8, 25 [CrossRef]
    [Google Scholar]
  28. Knijnenburg, T. A., Wessels, L. F. A. & Reinders, M. J. T. ( 2008; ). Creating gene set activity profiles with time-series expression data. IJBRA 4, 3
    [Google Scholar]
  29. Kresnowati, M. T., van Winden, W. A., Almering, M. J., ten Pierick, A., Ras, C., Knijnenburg, T. A., Daran-Lapujade, P., Pronk, J. T., Heijnen, J. J. & Daran, J. M. ( 2006; ). When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2, 49
    [Google Scholar]
  30. Laferte, A., Favry, E., Sentenac, A., Riva, M., Carles, C. & Chedin, S. ( 2006; ). The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev 20, 2030–2040.[CrossRef]
    [Google Scholar]
  31. Leek, J. T., Monsen, E., Dabney, A. R. & Storey, J. D. ( 2006; ). EDGE: extraction and analysis of differential gene expression. Bioinformatics 22, 507–508.[CrossRef]
    [Google Scholar]
  32. Li, H., Tsang, C. K., Watkins, M., Bertram, P. G. & Zheng, X. F. ( 2006; ). Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 442, 1058–1061.[CrossRef]
    [Google Scholar]
  33. Liko, D., Slattery, M. G. & Heideman, W. ( 2007; ). Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae. J Biol Chem 282, 26623–26628.[CrossRef]
    [Google Scholar]
  34. Marion, R. M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N. & O'Shea, E. K. ( 2004; ). Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101, 14315–14322.[CrossRef]
    [Google Scholar]
  35. Martin, D. E., Soulard, A. & Hall, M. N. ( 2004; ). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969–979.[CrossRef]
    [Google Scholar]
  36. Mashego, M. R., van Gulik, W. M. & Heijnen, J. J. ( 2007; ). Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Res 7, 48–66.[CrossRef]
    [Google Scholar]
  37. Moreno, F., Ahuatzi, D., Riera, A., Palomino, C. A. & Herrero, P. ( 2005; ). Glucose sensing through the Hxk2-dependent signalling pathway. Biochem Soc Trans 33, 265–268.[CrossRef]
    [Google Scholar]
  38. Moss, T. ( 2004; ). At the crossroads of growth control; making ribosomal RNA. Curr Opin Genet Dev 14, 210–217.[CrossRef]
    [Google Scholar]
  39. Newcomb, L. L., Diderich, J. A., Slattery, M. G. & Heideman, W. ( 2003; ). Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryot Cell 2, 143–149.[CrossRef]
    [Google Scholar]
  40. Novick, A. & Szilard, L. ( 1950; ). Experiments with the chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A 36, 708–719.[CrossRef]
    [Google Scholar]
  41. Ozcan, S., Dover, J., Rosenwald, A. G., Wolfl, S. & Johnston, M. ( 1996; ). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A 93, 12428–12432.[CrossRef]
    [Google Scholar]
  42. Piper, M. D., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J. & Pronk, J. T. ( 2002; ). Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277, 37001–37008.[CrossRef]
    [Google Scholar]
  43. Popolo, L., Vanoni, M. & Alberghina, L. ( 1982; ). Control of the yeast cell cycle by protein synthesis. Exp Cell Res 142, 69–78.[CrossRef]
    [Google Scholar]
  44. Postma, E., Kuiper, A., Tomasouw, W. F., Scheffers, W. A. & van Dijken, J. P. ( 1989; ). Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Appl Environ Microbiol 55, 3214–3220.
    [Google Scholar]
  45. Powers, T. & Walter, P. ( 1999; ). Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10, 987–1000.[CrossRef]
    [Google Scholar]
  46. Rolland, F., Wanke, V., Cauwenberg, L., Ma, P., Boles, E., Vanoni, M., de Winde, J. H., Thevelein, J. M. & Winderickx, J. ( 2001; ). The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1, 33–45.
    [Google Scholar]
  47. Rolland, F., Winderickx, J. & Thevelein, J. M. ( 2002; ). Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2, 183–201.[CrossRef]
    [Google Scholar]
  48. Schneider, B. L., Zhang, J., Markwardt, J., Tokiwa, G., Volpe, T., Honey, S. & Futcher, B. ( 2004; ). Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 24, 10802–10813.[CrossRef]
    [Google Scholar]
  49. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  50. Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G. & other authors ( 2007; ). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26, 663–674.[CrossRef]
    [Google Scholar]
  51. van den Brink, J., Daran-Lapujade, P., Pronk, J. T. & de Winde, J. H. ( 2008; ). New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess. BMC Genomics 9, 100 [CrossRef]
    [Google Scholar]
  52. van Helden, J., André, B. & Collado-Vides, J. ( 2000; ). A web site for the computational analysis of yeast regulatory sequences. Yeast 16, 177–187.[CrossRef]
    [Google Scholar]
  53. van Maris, A. J., Luttik, M. A., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. ( 2003; ). Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69, 2094–2099.[CrossRef]
    [Google Scholar]
  54. Vanoni, M., Vai, M., Popolo, L. & Alberghina, L. ( 1983; ). Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. J Bacteriol 156, 1282–1291.
    [Google Scholar]
  55. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. ( 1992; ). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517.[CrossRef]
    [Google Scholar]
  56. Warner, J. R. ( 1999; ). The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24, 437–440.[CrossRef]
    [Google Scholar]
  57. Westergaard, S. L., Oliveira, A. P., Bro, C., Olsson, L. & Nielsen, J. ( 2007; ). A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96, 134–145.[CrossRef]
    [Google Scholar]
  58. Xie, Y. & Varshavsky, A. ( 2001; ). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci U S A 98, 3056–3061.[CrossRef]
    [Google Scholar]
  59. Zurita-Martinez, S. A. & Cardenas, M. E. ( 2005; ). Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell 4, 63–71.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017392-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017392-0
Loading

Data & Media loading...

[Excel file](121 KB)

EXCEL

[Excel file](949 KB)

EXCEL

[Excel file](58 KB)

EXCEL

[PDF file](16 KB)

PDF

[PDF file](27 KB)

PDF

[PDF file](32 KB)

PDF

[PDF file](24 KB)

PDF

[PDF file](34 KB)

PDF

[PDF file](67 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error