1887

Abstract

The oleaginous bacterium strain PD630 serves as a model organism to investigate the metabolism of storage triacylglycerols (TAGs) in bacteria. The key enzyme catalysing the last step of TAG biosynthesis in bacteria is a promiscuous acyltransferase (Atf), exhibiting acyl-CoA acyltransferase activity to both diacylglycerols (DGAT activity) and fatty alcohols (wax ester synthase, WS activity). An 800 bp PCR product was obtained from chromosomal DNA of strain PD630 by using degenerate primers designed from conserved stretches of Atf proteins of strain ADP1 and mc155. The fragment was used as a probe on a strain PD630 gene library, resulting in the identification of a 3948 bp chromosomal DNA fragment containing the complete gene. An disruption mutant of strain PD630 exhibited a TAG-leaky phenotype and accumulated up to 50 % less fatty acids than the wild-type, with significantly reduced oleic acid content when cultivated in the presence of gluconate or oleic acid. Whereas DGAT activity was drastically reduced in comparison to the wild-type, WS activity remained almost unchanged in the mutant. RT-PCR analysis of gluconate-grown cells of strain PD630 showed that there is expression of under conditions of TAG synthesis. To identify additional Atfs in strain PD630, PCR employing non-degenerate primers deduced from RHA1 sequence data was used. This yielded nine additional -homologous genes exhibiting 88–99 % sequence identity to the corresponding strain RHA1 enzymes. Besides Atf1 only Atf2 exhibited high DGAT and/or WS activity when heterologously expressed in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016568-0
2008-08-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2327.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016568-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Alvarez H. M., Steinbüchel A.. 2002; Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol60:367–376
    [Google Scholar]
  3. Alvarez H. M., Mayer F., Fabritius D., Steinbüchel A.. 1996; Formation of intracytoplasmatic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol165:377–386
    [Google Scholar]
  4. Alvarez H. M., Kalscheuer R., Steinbüchel A.. 1997a; Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett99:239–246
    [Google Scholar]
  5. Alvarez H. M., Pucci O. H., Steinbüchel A.. 1997b; Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol47:132–139
    [Google Scholar]
  6. Alvarez H. M., Kalscheuer R., Steinbüchel A.. 2000; Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol54:218–223
    [Google Scholar]
  7. Alvarez H. M., Silva R. A., Cesari A. C., Zamit A. L., Peressutti S. R., Reichelt R., Keller U., Malkus U., Rasch C.. other authors 2004; Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to dehydration. FEMS Microbiol Ecol50:75–86
    [Google Scholar]
  8. Anderson A. J., Dawes E. A.. 1990; Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev54:450–472
    [Google Scholar]
  9. Barksdale L., Kim K. S.. 1977; Mycobacterium. Bacteriol Rev41:217–372
    [Google Scholar]
  10. Bredemeier R., Hulsch R., Metzger J. O., Berthe-Corti L.. 2003; Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol (NY5579–583
    [Google Scholar]
  11. Bryn K., Jantzen E., Bovre K.. 1977; Occurrence and patterns of waxes in Neisseriaceae. J Gen Microbiol102:33–43
    [Google Scholar]
  12. Bullock W. O., Fernandez J. M., Stuart J. M.. 1987; XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques5:376–379
    [Google Scholar]
  13. Christiansen K.. 1978; Triacylglycerol synthesis in lipid particles from baker's yeast (Saccharomyces cerevisiae. Biochim Biophys Acta530:78–90
    [Google Scholar]
  14. CserzÖ M., Wallin E., Simon I., von Heijne G., Elofsson A.. 1997; Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng10:673–676
    [Google Scholar]
  15. Daniel J., Deb C., Dubey V. S., Sirakova T. D., Abomoelak B., Morbidoni H. R., Kolattukudy P. E.. 2004; Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol186:5017–5030
    [Google Scholar]
  16. Fixter L. M., Nagi M. N., McCormack J. G., Fewson C. A.. 1986; Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. J Gen Microbiol132:3147–3157
    [Google Scholar]
  17. Friedrich B., Hogrefe C., Schlegel H. G.. 1981; Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol147:198–205
    [Google Scholar]
  18. Hohn B., Collins J.. 1980; A small cosmid for efficient cloning of large DNA fragments. Gene11:291–298
    [Google Scholar]
  19. Jäger W., Schäfer A., Kalinowski J., Pühler A.. 1995; Isolation of insertion elements from Gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol Lett126:1–6
    [Google Scholar]
  20. Kalscheuer R., Steinbüchel A.. 2003; A novel bifunctional wax ester synthase/acyl-CoA : diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem278:8075–8082
    [Google Scholar]
  21. Kalscheuer R., ArenskÖtter M., Steinbüchel A.. 1999; Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids. Appl Microbiol Biotechnol52:508–515
    [Google Scholar]
  22. Kalscheuer R., Wältermann M., Alvarez H. M., Steinbüchel A.. 2001; Preparative isolation of lipid inclusion bodies from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol177:20–28
    [Google Scholar]
  23. Kalscheuer R., Uthoff S., Luftmann H., Steinbüchel A.. 2003; In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA : diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter calcoaceticus ADP1. Eur J Lipid Sci Technol105:578–584
    [Google Scholar]
  24. Kalscheuer R., Luftmann H., Steinbüchel A.. 2004; Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol70:7119–7125
    [Google Scholar]
  25. Kalscheuer R., StÖlting T., Steinbüchel A.. 2006a; MicroDiesel: Escherichia coli engineered for fuel production. Microbiology152:2529–2536
    [Google Scholar]
  26. Kalscheuer R., StÖveken T., Luftmann H., Malkus U., Reichelt R., Steinbüchel A.. 2006b; Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol72:1373–1379
    [Google Scholar]
  27. Kalscheuer R., StÖveken T., Malkus U., Reichelt R., Golyshin P. N., Sabirova J. S., Ferrer M., Timmis K. N., Steinbüchel A.. 2007; Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol189:918–928
    [Google Scholar]
  28. Katavic V., Reed D. W., Taylor D. C., Giblin E. M., Barton D. L., Zou J., MacKenzie S. L., Covello P. S., Kunst L.. 1995; Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol108:399–409
    [Google Scholar]
  29. Leman J.. 1997; Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol43:195–243
    [Google Scholar]
  30. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218
    [Google Scholar]
  31. McLeod M. P., Warren R. L., Hsiao W. W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L.. other authors 2006; The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A103:15582–15587
    [Google Scholar]
  32. Olukoshi E. R., Packter N. M.. 1994; Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology140:931–943
    [Google Scholar]
  33. Overhage J., Priefert H., Rabenhorst J., Steinbüchel A.. 1999; Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol52:820–828
    [Google Scholar]
  34. Packter N. M., Olukoshi E. R.. 1995; Ultrastructural studies of neutral lipid localization in Streptomyces. Arch Microbiol164:420–427
    [Google Scholar]
  35. Pelicic V., Reyrat J. M., Gicquel B.. 1996; Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol20:919–925
    [Google Scholar]
  36. Quandt J., Hynes M. F.. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene127:15–21
    [Google Scholar]
  37. Ramakrishnan L., Tran H. T., Federspiel N. A., Falkow S.. 1997; A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J Bacteriol179:5862–5868
    [Google Scholar]
  38. Ratledge C.. 1989; Biotechnology of oils and fats. In Microbial Lipids pp567–650 Edited by Ratledge C., Wilkinson S. G.. London: Academic Press;
    [Google Scholar]
  39. Russell N. J., Volkman J. K.. 1980; The effect of growth temperature and wax ester compositions in the psychrophilic bacterium Micrococcus cryophilus ATCC 15174. J Gen Microbiol118:131–141
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schlegel H. G., Kaltwasser H., Gottschalk G.. 1961; Ein Submersverfahren zur Kultur Wasserstoff oxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol38:209–222 (in German
    [Google Scholar]
  42. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology1:784–791
    [Google Scholar]
  43. Sirakova T. D., Dubey V. S., Deb C., Daniel J., Korotkova T. A., Abomoelak B., Kolattukudy P. E.. 2006; Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology152:2717–2725
    [Google Scholar]
  44. Stahmann K. P., Kupp C., Feldmann S. D., Sahm H.. 1994; Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii. Appl Microbiol Biotechnol42:121–127
    [Google Scholar]
  45. Steinbüchel A.. 1991; Polyhydroxyalkanoic acids. In Biomaterials, Novel Materials pp123–213 Edited by Byrom D.. Basingstoke: Macmillan;
    [Google Scholar]
  46. Steinbüchel A., Valentin H. E.. 1995; Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett128:219–228
    [Google Scholar]
  47. StÖveken T., Kalscheuer R., Malkus U., Reichelt R., Steinbüchel A.. 2005; The wax ester synthase/acyl coenzyme A : diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol187:1369–1376
    [Google Scholar]
  48. Uthoff S., StÖveken T., Weber N., Vosmann K., Klein E., Kalscheuer R., Steinbüchel A.. 2005; Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl-CoA : diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl Environ Microbiol71:790–796
    [Google Scholar]
  49. Voss I., Steinbüchel A.. 2001; High cell density cultivation of Rhodococcus opacus for lipid production at a pilot scale. Appl Microbiol Biotechnol55:547–555
    [Google Scholar]
  50. Wältermann M., Steinbüchel A.. 2005; Neutral lipid-bodies in prokaryotes: recent insights into structure, formation and relationships to eukaryotic lipid depots. J Bacteriol187:3607–3619
    [Google Scholar]
  51. Wältermann M., Steinbüchel A.. 2006; Wax ester and triacylglycerol inclusions. In Inclusions in Prokaryotes (Microbiology Monographs, vol. 1) pp137–166 Edited by Shively J. M., Steinbüchel A. Heidelberg: Springer;
    [Google Scholar]
  52. Wältermann M., Luftmann H., Baumeister D., Kalscheuer R., Steinbüchel A.. 2000; Rhodococcus opacus PD630 as a source of high-value single cell oil? Isolation and characterization of triacylgycerols and other storage lipids. Microbiology146:1143–1149
    [Google Scholar]
  53. Wältermann M., StÖveken T., Steinbüchel A.. 2006; Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA : diacylglycerol acyltransferases. Biochimie89:230–242
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016568-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016568-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error