1887

Abstract

We previously found the class C .I2 group II (GII) intron in SCH909 inserted into the variable region of a class 1 integron within the site of the gene cassette. Here, we demonstrate that this  : : I2 gene cassette is a recombinationally active element despite the presence of the .I2 intron. In addition, .I2 is an active GII intron capable of performing self-splicing and invading specific target sites. Intron homing to a DNA target site is RecA-independent and recognizes the intron binding site (IBS)1 and IBS3 regions, formed by the 5′ TTGTT 3′ consensus sequence located within the inverse core site of integrons. Our results also indicate that the process for .I2 intron mobilization involves a secondary structure provided by the folding of the complete site. Moreover, phylogenetic analysis of the class C GII introns showed a clear divergent clade formed by introns that insert within specific sites usually associated with lateral gene transfer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/016360-0
2008-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1341.html?itemId=/content/journal/micro/10.1099/mic.0.2007/016360-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1994; ). E. coli, plasmids and bacteriophages. Chapter 1 in Current Protocols in Molecular Biology, pp. 2.4.1–2.4.2. NY: Greene Publishing Associates and Wiley Interscience.
  2. Bouvier, M., Demarre, G. & Mazel, D. ( 2005; ). Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J 24, 4356–4367.[CrossRef]
    [Google Scholar]
  3. Centrón, D. & Roy, P. H. ( 2002; ). Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother 46, 1402–1409.[CrossRef]
    [Google Scholar]
  4. Collis, C. M. & Hall, R. M. ( 1992; ). Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol 6, 2875–2885.[CrossRef]
    [Google Scholar]
  5. Cousineau, B., Lawrence-Cavanagh, S., Smith, D. & Belfort, M. ( 2000; ). Retrotransposition of a bacterial group II intron. Nature 404, 1018–1021.[CrossRef]
    [Google Scholar]
  6. Dai, L. & Zimmerly, S. ( 2002; ). Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res 30, 1091–1102.[CrossRef]
    [Google Scholar]
  7. Granlund, M., Michel, F. & Norgren, M. ( 2001; ). Mutually exclusive distribution of IS1548 and GBSi1, an active group II intron identified in human isolates of group B streptococci. J Bacteriol 183, 2560–2569.[CrossRef]
    [Google Scholar]
  8. Guo, H., Karberg, M., Long, M., Jones, J. P., III, Sullenger, B. & Lambowitz, A. M. ( 2000; ). Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457.[CrossRef]
    [Google Scholar]
  9. Hall, R. M., Brookes, D. E. & Stokes, H. W. ( 1991; ). Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Plasmid 26, 10–19.[CrossRef]
    [Google Scholar]
  10. Jiménez-Zurdo, J. I., García-Rodriguez, F. M., Barrientos-Durán, A. & Toro, N. ( 2003; ). DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J Mol Biol 326, 413–423.[CrossRef]
    [Google Scholar]
  11. Johansson, C., Kamali-Moghaddam, M. & Sundström, L. ( 2004; ). Integron integrase binds to bulged hairpin DNA. Nucleic Acids Res 32, 4033–4043.[CrossRef]
    [Google Scholar]
  12. Kennell, J. C., Moran, J. V., Perlman, P. S., Butow, R. A. & Lambowitz, A. M. ( 1993; ). Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73, 133–146.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Lambowitz, A. M. & Belfort, M. ( 1993; ). Introns as mobile genetic elements. Annu Rev Biochem 62, 587–622.[CrossRef]
    [Google Scholar]
  15. Lévesque, C., Brassard, S., Lapointe, J. & Roy, P. H. ( 1994; ). Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integrons. Gene 142, 49–54.[CrossRef]
    [Google Scholar]
  16. MacDonald, D., Demarre, G., Bouvier, M., Mazel, D. & Gopaul, D. N. ( 2006; ). Structural basis for broad DNA-specificity in integron recombination. Nature 440, 1157–1162.[CrossRef]
    [Google Scholar]
  17. Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G. M., Belfort, M. & Lambowitz, A. M. ( 1997; ). A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev 11, 2910–2924.[CrossRef]
    [Google Scholar]
  18. Messier, N. & Roy, P. H. ( 2001; ). Integron integrases possess a unique additional domain necessary for activity. J Bacteriol 183, 6699–6706.[CrossRef]
    [Google Scholar]
  19. Michel, F. & Ferat, J. L. ( 1995; ). Structure and activities of group II introns. Annu Rev Biochem 64, 435–461.[CrossRef]
    [Google Scholar]
  20. Mohr, G., Smith, D., Belfort, M. & Lambowitz, A. M. ( 2000; ). Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev 14, 559–573.
    [Google Scholar]
  21. Noah, J. W. & Lambowitz, A. M. ( 2003; ). Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking. Biochemistry 42, 12466–12480.[CrossRef]
    [Google Scholar]
  22. Orman, B. E., Piñeiro, S. A., Arduino, S., Galas, M., Melano, R., Caffer, M. I., Sordelli, D. O. & Centrón, D. ( 2002; ). Evolution of multiresistance in nontyphoid Salmonella serovars from 1984 to 1998 in Argentina. Antimicrob Agents Chemother 46, 3963–3970.[CrossRef]
    [Google Scholar]
  23. Pyle, A. M. ( 2000; ). New tricks from an itinerant intron. Nat Struct Biol 7, 352–354.[CrossRef]
    [Google Scholar]
  24. Ramírez, M. S., Quiroga, C. & Centrón, D. ( 2005; ). Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 49, 5179–5181.[CrossRef]
    [Google Scholar]
  25. Recchia, G. D. & Hall, R. M. ( 1997; ). Origin of the mobile gene cassettes found in integrons. Trends Microbiol 5, 389–394.[CrossRef]
    [Google Scholar]
  26. Rest, J. S. & Mindell, D. P. ( 2003; ). Retroids in archaea: phylogeny and lateral origins. Mol Biol Evol 20, 1134–1142.[CrossRef]
    [Google Scholar]
  27. Robart, A. R., Montgomery, N. K., Smith, K. L. & Zimmerly, S. ( 2004; ). Principles of 3′ splice site selection and alternative splicing for an unusual group II intron from Bacillus anthracis. RNA 10, 854–862.[CrossRef]
    [Google Scholar]
  28. Robart, A. R., Seo, W. & Zimmerly, S. ( 2007; ). Insertion of group II intron retroelements after intrinsic transcriptional terminators. Proc Natl Acad Sci U S A 104, 6620–6625.[CrossRef]
    [Google Scholar]
  29. Ronning, D. R., Guynet, C., Ton-Hoang, B., Perez, Z. N., Ghirlando, R., Chandler, M. & Dyda, F. ( 2005; ). Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell 20, 143–154.[CrossRef]
    [Google Scholar]
  30. Rose, R. E. ( 1988; ). The nucleotide sequence of pACYC184. Nucleic Acids Res 16, 355 [CrossRef]
    [Google Scholar]
  31. Rowe-Magnus, D. A., Guerout, A. M. & Mazel, D. ( 1999; ). Super-integrons. Res Microbiol 150, 641–651.[CrossRef]
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Senda, K., Arakawa, Y., Ichiyama, S., Nakashima, K., Ito, H., Ohsuka, S., Shimokata, K., Kato, N. & Ohta, M. ( 1996; ). PCR detection of metallo-beta-lactamase gene (bla IMP) in Gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol 34, 2909–2913.
    [Google Scholar]
  34. Stokes, H. W., O'Gorman, D. B., Recchia, G. D., Parsekhian, M. & Hall, R. M. ( 1997; ). Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol 26, 731–745.[CrossRef]
    [Google Scholar]
  35. Su, L. J., Waldsich, C. & Pyle, A. M. ( 2005; ). An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res 33, 6674–6687.[CrossRef]
    [Google Scholar]
  36. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  37. Toor, N., Hausner, G. & Zimmerly, S. ( 2001; ). Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7, 1142–1152.[CrossRef]
    [Google Scholar]
  38. Toor, N., Robart, A. R., Christianson, J. & Zimmerly, S. ( 2006; ). Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem–loop motif of a transcriptional terminator. Nucleic Acids Res 34, 6461–6471.[CrossRef]
    [Google Scholar]
  39. Val, M. E., Bouvier, M., Campos, J., Sherratt, D., Cornet, F., Mazel, D. & Barre, F. X. ( 2005; ). The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19, 559–566.[CrossRef]
    [Google Scholar]
  40. Zhong, J. & Lambowitz, A. M. ( 2003; ). Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J 22, 4555–4565.[CrossRef]
    [Google Scholar]
  41. Zimmerly, S., Guo, H., Eskes, R., Yang, J., Perlman, P. S. & Lambowitz, A. M. ( 1995a; ). A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83, 529–583.[CrossRef]
    [Google Scholar]
  42. Zimmerly, S., Guo, H., Perlman, P. S. & Lambowitz, A. M. ( 1995b; ). Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82, 545–554.[CrossRef]
    [Google Scholar]
  43. Zimmerly, S., Hausner, G. & Wu, X.-C. ( 2001; ). Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res 29, 1238–1250.[CrossRef]
    [Google Scholar]
  44. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/016360-0
Loading
/content/journal/micro/10.1099/mic.0.2007/016360-0
Loading

Data & Media loading...

Supplements

[PDF file](45 KB)

PDF

[PDF file](110 KB)

PDF

GII intron and E1 sequences used in this study [PDF file](28 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error