1887

Abstract

In this study, an MS-based proteomics approach to characterizing the virion structural proteins of the novel marine ‘photosynthetic’ phage S-PM2 is presented. The virus infects ecologically important cyanobacteria of the genus that make a substantial contribution to primary production in the oceans. The S-PM2 genome encodes 236 ORFs, some of which exhibit similarity to known phage virion structural proteins, but the majority (54 %) show no detectable homology to known proteins from other organisms. Using public and in-house bioinformatics tools the proteome of S-PM2 was predicted and a database compatible with MS-based search engines was constructed. S-PM2 virion proteins were resolved by SDS-PAGE, excised, tryptically digested and analysed by LC-ESI-MS/MS. The resulting MS data were searched against the database. A parallel control study was undertaken on the well-characterized coliphage T4 in order to assess the sensitivity and efficiency of this approach. In total, 11 of the 15 S-PM2 proteins, predicted to be virion proteins by bioinformatics approaches, were confirmed as such, together with the identification of a further 12 novel structural proteins. In the case of T4, 24 of the 39 known virion structural proteins were identified, including the major tail-fibre proteins. This approach has wide-ranging applicability and can be applied to any novel organism whose genome encodes ORFs with few detectable homologies in the public databases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/016261-0
2008-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1775.html?itemId=/content/journal/micro/10.1099/mic.0.2007/016261-0&mimeType=html&fmt=ahah

References

  1. Akhter, T., Zhao, L., Kohda, A., Mio, K., Kanamaru, S. & Arisaka, F. ( 2007; ). The neck of bacteriophage T4 is a ring-like structure formed by a hetero-oligomer of gp13 and gp14. Biochim Biophys Acta 1774, 1036–1043.[CrossRef]
    [Google Scholar]
  2. Black, L. W., Showe, M. K. & Steven, A. C. ( 1994; ). Morphogenesis of the T4 head. In Molecular Biology of Bacteriophage T4, pp. 218–258. Edited by J. D. Karam, J. W. Drake, K. N. Kreuzer and others. Washington, DC: American Society for Microbiology.
  3. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. ( 1998; ). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240.[CrossRef]
    [Google Scholar]
  4. Frank, J. ( 2006; ). Three Dimensional Electron Microscopy of Macromolecular Assemblies. Oxford: Oxford University Press.
  5. Fuhrman, J. A. ( 1999; ). Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548.[CrossRef]
    [Google Scholar]
  6. Hambly, E., Tétart, F., Desplats, C., Wilson, W. H., Krisch, H. M. & Mann, N. H. ( 2001; ). A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci U S A 98, 11411–11416.[CrossRef]
    [Google Scholar]
  7. Konopa, G. & Taylor, K. ( 1979; ). Coliphage lambda ghosts obtained by osmotic shock or LiCl treatment are devoid of J- and H-gene products. J Gen Virol 43, 729–733.[CrossRef]
    [Google Scholar]
  8. Kostyuchenko, V. A., Leiman, P. G., Chipman, P. R., Kanamaru, S., van Raaij, M. J., Arisaka, F., Mesyanzhinov, V. V. & Rossmann, M. ( 2003; ). Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol 10, 688–693.[CrossRef]
    [Google Scholar]
  9. Kostyuchenko, V. A., Chipman, P. R., Leiman, P. G., Arisaka, F., Mesyanzhinov, V. V. & Rossmann, M. G. ( 2005; ). The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12, 810–813.[CrossRef]
    [Google Scholar]
  10. Leiman, P. G., Kanamaru, S., Mesyanzhinov, V. V., Arisaka, F. & Rossmann, M. G. ( 2003; ). Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci 60, 2356–2370.[CrossRef]
    [Google Scholar]
  11. Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. ( 2004; ). Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429.[CrossRef]
    [Google Scholar]
  12. Mann, N. H., Clokie, M. R. J., Millard, A., Cook, A., Wilson, W. H., Wheatley, P. J., Letarov, A. & Krisch, H. M. ( 2005; ). The genome of S-PM2, a ‘photosynthetic’ T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol 187, 3188–3200.[CrossRef]
    [Google Scholar]
  13. Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T. & Rüger, W. ( 2003a; ). Bacteriophage T4 genome. Microbiol Mol Biol Rev 67, 86–156.[CrossRef]
    [Google Scholar]
  14. Miller, E. S., Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Durkin, A. S., Ciecko, A., Feldblyum, T. V., White, O., Paulsen, I. T. & other authors ( 2003b; ). Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185, 5220–5233.[CrossRef]
    [Google Scholar]
  15. Pope, W. H., Weigele, P. R., Chang, J., Pedulla, M. L., Ford, M. E., Houtz, J. M., Jiang, W., Chiu, W., Hatfull, G. F. & other authors ( 2007; ). Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a ‘horned’ bacteriophage of marine Synechococcus. J Mol Biol 368, 966–981.[CrossRef]
    [Google Scholar]
  16. Prangishvili, D. & Garrett, R. J. ( 2004; ). Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32, 204–208.[CrossRef]
    [Google Scholar]
  17. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Speicher, K. D., Kolbas, O., Harper, S. & Speicher, D. W. ( 2000; ). Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 11, 74–86.
    [Google Scholar]
  19. Suttle, C. A. ( 2007; ). Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5, 801–812.[CrossRef]
    [Google Scholar]
  20. Van Raaij, M. J., Schoehn, G., Burda, M. R. & Miller, S. ( 2001; ). Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J Mol Biol 314, 1137–1146.[CrossRef]
    [Google Scholar]
  21. Weigele, P. R., Pope, W. H., Pedulla, M. L., Houtz, J. M., Smith, A. L., Conway, J. F., King, J., Hatfull, G. F., Lawrence, J. G. & Hendrix, R. W. ( 2007; ). Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol 9, 1675–1695.[CrossRef]
    [Google Scholar]
  22. Wilson, W. H., Joint, I. R., Carr, N. G. & Mann, N. H. ( 1993; ). Isolation and molecular characterization of 5 marine cyanophages propagated on Synechococcus sp. strain WH7803. Appl Environ Microbiol 59, 3736–3743.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/016261-0
Loading
/content/journal/micro/10.1099/mic.0.2007/016261-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error