1887

Abstract

Cyclopropane fatty acid (CFA) synthesis was investigated in . The data obtained demonstrated that acid-grown cells or cells harvested in the stationary growth phase showed changes in fatty acid composition similar to those of ethanol-grown cells. An increase of the CFA content and a decrease of the oleic acid content were observed. The biosynthesis of CFAs from unsaturated fatty acid phospholipids is catalysed by CFA synthases. Quantitative real-time-PCR experiments were performed on the gene of , which encodes a putative CFA synthase. The level of transcripts increased when cells were harvested in stationary phase and when cells were grown in the presence of ethanol or at low pH, suggesting transcriptional regulation of the gene under different stress conditions. In contrast to , only one functional promoter was identified upstream of the gene of . The function of the gene was confirmed by complementation of a -deficient strain. Nevertheless, the complementation remained partial because the conversion percentage of unsaturated fatty acids into CFA of the complemented strain was much lower than that of the wild-type strain. Moreover, a prevalence of cycC19 : 0 was observed in the membrane of the complemented strain. This could be due to a specific affinity of the CFA synthase from . In spite of this partial complementation, the complemented strain of totally recovered its viability after ethanol shock (10 %, v/v) whereas its viability was only partly recovered after an acid shock at pH 3.0.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/016238-0
2008-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2611.html?itemId=/content/journal/micro/10.1099/mic.0.2007/016238-0&mimeType=html&fmt=ahah

References

  1. Barne, K. A., Bown, J. A., Busby, S. J. & Minchin, S. D. ( 1997; ). Region 2.5 of the Escherichia coli RNA polymerase σ 70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters. EMBO J 16, 4034–4040.[CrossRef]
    [Google Scholar]
  2. Bertani, G. ( 1951; ). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293–300.
    [Google Scholar]
  3. Bligh, E. G. & Dyer, W. J. ( 1959; ). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  4. Brown, J. L., Ross, T., McMeekin, T. A. & Nichols, P. D. ( 1997; ). Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37, 163–173.[CrossRef]
    [Google Scholar]
  5. Budin-Verneuil, A., Maguin, E., Auffray, Y., Ehrlich, S. D. & Pichereau, V. ( 2005; ). Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH. FEMS Microbiol Lett 250, 189–194.[CrossRef]
    [Google Scholar]
  6. Cavin, J. F., Prevost, H., Lin, J., Schmitt, P. & Divies, C. ( 1989; ). Medium for screening Leuconostoc oenos strains defective in malolactic fermentation. Appl Environ Microbiol 55, 751–753.
    [Google Scholar]
  7. Chang, Y. Y. & Cronan, J. E., Jr ( 1999; ). Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33, 249–259.[CrossRef]
    [Google Scholar]
  8. Cronan, J. E., Jr ( 2002; ). Phospholipid modifications in bacteria. Curr Opin Microbiol 5, 202–205.[CrossRef]
    [Google Scholar]
  9. Cronan, J. E., Jr, Nunn, W. D. & Batchelor, J. G. ( 1974; ). Studies on the biosynthesis of cyclopropane fatty acids in Escherichia coli. Biochim Biophys Acta 348, 63–75.[CrossRef]
    [Google Scholar]
  10. da Silveira, M. G., Vitoria San Romao, M., Loureiro-Dias, M. C., Rombouts, F. M. & Abee, T. ( 2002; ). Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 68, 6087–6093.[CrossRef]
    [Google Scholar]
  11. da Silveira, M. G., Golovina, E. A., Hoekstra, F. A., Rombouts, F. M. & Abee, T. ( 2003; ). Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 69, 5826–5832.[CrossRef]
    [Google Scholar]
  12. da Silveira, M. G., Baumgartner, M., Rombouts, F. M. & Abee, T. ( 2004; ). Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70, 2748–2755.[CrossRef]
    [Google Scholar]
  13. Desroche, N., Beltramo, C. & Guzzo, J. ( 2005; ). Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60, 325–333.[CrossRef]
    [Google Scholar]
  14. Dombek, K. M. & Ingram, L. O. ( 1984; ). Effects of ethanol on the Escherichia coli plasma membrane. J Bacteriol 157, 233–239.
    [Google Scholar]
  15. Drici-Cachon, Z., Cavin, J. F. & Diviès, C. ( 1996; ). Effect of pH and age of culture on cellular fatty acid composition of Leuconostoc oenos. Lett Appl Microbiol 22, 331–334.[CrossRef]
    [Google Scholar]
  16. Gennis, R. B. ( 1989; ). Membrane dynamics and protein–lipid interactions. In Biomembranes: Molecular Structure and Function, pp. 166–198. Edited by C. R. Cantor. New York: Springer-Verlag.
  17. Grandvalet, C., Coucheney, F., Beltramo, C. & Guzzo, J. ( 2005; ). CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187, 5614–5623.[CrossRef]
    [Google Scholar]
  18. Grogan, D. W. & Cronan, J. E., Jr ( 1984; ). Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction. J Bacteriol 158, 286–295.
    [Google Scholar]
  19. Grogan, D. W. & Cronan, J. E., Jr ( 1986; ). Characterization of Escherichia coli mutants completely defective in synthesis of cyclopropane fatty acids. J Bacteriol 166, 872–877.
    [Google Scholar]
  20. Grogan, D. W. & Cronan, J. E., Jr ( 1997; ). Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61, 429–441.
    [Google Scholar]
  21. Guerrini, S., Bastianini, A., Granchi, L. & Vincenzini, M. ( 2002; ). Effect of oleic acid on Oenococcus oeni strains and malolactic fermentation in wine. Curr Microbiol 44, 5–9.[CrossRef]
    [Google Scholar]
  22. Guzzo, J., Jobin, M. P., Delmas, F., Fortier, L. C., Garmyn, D., Tourdot-Marechal, R., Lee, B. & Divies, C. ( 2000; ). Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol 55, 27–31.[CrossRef]
    [Google Scholar]
  23. Ingram, L. O. ( 1976; ). Adaptation of membrane lipids to alcohols. J Bacteriol 125, 670–678.
    [Google Scholar]
  24. Jensen, K. F. ( 1993; ). The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175, 3401–3407.
    [Google Scholar]
  25. Jones, R. P. ( 1989; ). Biological principles for the effects of ethanol. Enzyme Microb Technol 11, 130–153.[CrossRef]
    [Google Scholar]
  26. Kim, B. H., Kim, S., Kim, H. G., Lee, J., Lee, I. S. & Park, Y. K. ( 2005; ). The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology 151, 209–218.[CrossRef]
    [Google Scholar]
  27. Kohli, D. K. & Bachhawat, A. K. ( 2003; ). CLOURE: CLUSTAL Output Reformatter, a program for reformatting CLUSTAL_X/CLUSTAL W outputs for SNP analysis and molecular systematics. Nucleic Acids Res 31, 3501–3502.[CrossRef]
    [Google Scholar]
  28. Lepage, C., Fayolle, F., Hermann, M. & Vandecasteele, J.-P. ( 1987; ). Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133, 103–110.
    [Google Scholar]
  29. Loffeld, B. & Keweloh, H. ( 1996; ). cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31, 811–815.[CrossRef]
    [Google Scholar]
  30. Lonvaud-Funel, A. & Desens, C. ( 1990; ). Constitution en acides gras des membranes des bactéries lactiques du vin. Incidences des conditions de culture. Sci Aliments 10, 817–829.
    [Google Scholar]
  31. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.[CrossRef]
    [Google Scholar]
  32. Rigomier, D., Bohin, J. P. & Lubochinsky, B. ( 1980; ). Effects of ethanol and methanol on lipid metabolism in Bacillus subtilis. J Gen Microbiol 121, 139–149.
    [Google Scholar]
  33. Sajbidor, J. ( 1997; ). Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit Rev Biotechnol 17, 87–103.[CrossRef]
    [Google Scholar]
  34. Salema, M., Capucho, I., Poolman, B., San Romao, M. V. & Dias, M. C. ( 1996; ). In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J Bacteriol 178, 5537–5539.
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Svobodova, J. & Svoboda, P. ( 1988; ). Membrane fluidity in Bacillus subtilis. Physical change and biological adaptation. Folia Microbiol (Praha) 33, 161–169.[CrossRef]
    [Google Scholar]
  37. Swan, T. M. & Watson, K. ( 1997; ). Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. Can J Microbiol 43, 70–77.[CrossRef]
    [Google Scholar]
  38. Teixeira, H., Goncalves, M. G., Rozes, N., Ramos, A. & San Romao, M. V. ( 2002; ). Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: a response to ethanol stress? Microb Ecol 43, 146–153.[CrossRef]
    [Google Scholar]
  39. Weber, F. J. & de Bont, J. A. ( 1996; ). Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286, 225–245.[CrossRef]
    [Google Scholar]
  40. Zhao, Y., Hindorff, L. A., Chuang, A., Monroe-Augustus, M., Lyristis, M., Harrison, M. L., Rudolph, F. B. & Bennett, G. N. ( 2003; ). Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69, 2831–2841.[CrossRef]
    [Google Scholar]
  41. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/016238-0
Loading
/content/journal/micro/10.1099/mic.0.2007/016238-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error