1887

Abstract

The basidiomycete yeast is a cause of significant morbidity and mortality in immunocompromised hosts throughout the world. The sporadic nature of the infection and the limited empirical evidence for direct human-to-human transmission have led to the belief that infections in humans are predominantly caused by the inhalation of basidiospores from environmental sources. Therefore, analysing the structure of environmental populations of can significantly increase our understanding of its ecology, evolution and epidemiology. Decaying wood is a rich source of organic and inorganic compounds and is known to be a suitable ecological niche for many micro-organisms, including . However, relatively little is known about the population structure of sampled from decaying wood. In this study, we analysed samples of var. colonizing decaying wood in tree hollows of nine tree species in five geographical locations (Delhi, Bulandshahar, Hathras, Amritsar and Amrouli) in north-western India. Multilocus sequence typing was conducted using five gene fragments for each of 78 isolates. All isolates belonged to mating type . Population-genetic analyses identified no evidence for significant differentiation among populations belonging to either different geographical areas or different host tree species. Interestingly, despite the lack of mating type strains in our survey, we found unambiguous evidence for recombination in our population analyses. Our results are consistent with the hypothesis of long-distance dispersal and recombination in environmental populations of this species in India.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015594-0
2008-05-01
2020-05-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1513.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015594-0&mimeType=html&fmt=ahah

References

  1. Agapow P.-M., Burt A.. 2001; Indices of multilocus linkage disequilibrium. Mol Ecol Notes1:101–102
    [Google Scholar]
  2. Avise J. C.. 1994; Molecular Markers, Natural History and Evolution New York: Chapman & Hall;
    [Google Scholar]
  3. Barker F. K., Lutzoni F. M.. 2002; The utility of the incongruence length difference test. Syst Biol51:625–637
    [Google Scholar]
  4. Bennett J. E., Kwon-Chung K. J., Howard D. H.. 1977; Epidemiologic differences among serotypes of Cryptococcus neoformans . Am J Epidemiol105:582–586
    [Google Scholar]
  5. Campbell L. T., Currie B. J., Krockenberger M., Malik R., Meyer W., Heitman J., Carter D.. 2005; Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii . Eukaryot Cell4:1403–1409
    [Google Scholar]
  6. Casadevall A., Perfect J. R.. 1998; Cryptococcus neoformans Washington, DC: ASM Press;
    [Google Scholar]
  7. Casadevall A., Steenbergen J. N., Nosanchuk J. D.. 2003; Ready-made virulence and dual use virulence factors in pathogenic environmental fungi – the Cryptococcus neoformans paradigm. Curr Opin Microbiol6:332–337
    [Google Scholar]
  8. Faith D. P.. 1991; Cladistic permutation tests for monophyly and nonmonophyly. Syst Zool40:366–375
    [Google Scholar]
  9. Farris J. S., Källersjö M., Kluge A. G., Bult C.. 1994; Testing significance of incongruence. Cladistics10:315–319
    [Google Scholar]
  10. Fraser J. A., Giles S. S., Wenink E. C., Geunes-Boyer S. G., Wright J. R., Diezmann S., Allen A., Stajich J. E., Dietrich F. S.. other authors 2005; Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature437:1360–1364
    [Google Scholar]
  11. Galtier N., Gouy M., Gautier C.. 1996; SeaView and phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci12:543–548
    [Google Scholar]
  12. Goddard M. R., Godfray H. C. J., Burt A.. 2005; Sex increases the efficacy of natural selection in experimental yeast populations. Nature434:636–640
    [Google Scholar]
  13. Jensen J. L., Bohonak A. J., Kelley S. T.. 2005; Isolation by distance, web service v.3.14. BMC Genet6:13
    [Google Scholar]
  14. Keller S. M., Viviani M. A., Esposto M. C., Cogliati M., Wickes B. L.. 2003; Molecular and genetic characterization of a serotype A MAT a Cryptococcus neoformans isolate. Microbiology149:131–142
    [Google Scholar]
  15. Kidd S. E., Guo H., Bartlett K. H., Xu J., Kronstad J. W.. 2005; Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eukaryot Cell4:1629–1638
    [Google Scholar]
  16. Kwon-Chung K. J.. 1975; A new genus, Filobasidiella , the perfect state of Cryptococcus neoformans . Mycologia67:1197–1200
    [Google Scholar]
  17. Kwon-Chung K. J.. 1976; Morphogenesis of Filobasidiella neoformans , the sexual state of Cryptococcus neoformans . Mycologia68:821–833
    [Google Scholar]
  18. Kwon-Chung K. J., Bennett J. E.. 1978; Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol108:337–340
    [Google Scholar]
  19. Kwon-Chung K. J., Wickes B. L., Stockman L., Roberts G. D., Ellis D., Howard D. H.. 1992; Virulence, serotype, and molecular characteristics of environmental strains of Cryptococcus neoformans var. gattii . Infect Immun60:1869–1874
    [Google Scholar]
  20. Lazera M. S., Pires F. D., Camillo-Coura L., Nishikawa M. M., Bezerra C. C., Trilles L., Wanke B.. 1996; Natural habitat of Cryptococcus neoformans var. neoformans in decaying wood forming hollows in living trees. J Med Vet Mycol34:127–131
    [Google Scholar]
  21. Lin X., Hull C. M., Heitman J.. 2005; Sexual reproduction between partners of the same mating type in Cryptococcus neoformans . Nature434:1017–1021
    [Google Scholar]
  22. Lin X., Huang J. C., Mitchell T. G., Heitman J.. 2006; Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATα allele enhances filamentation. PLoS Genet2:e187
    [Google Scholar]
  23. Lin X., Litvintseva A. P., Nielsen K., Patel S., Floyd A., Mitchell T. G., Heitman J.. 2007; α AD α hybrids of Cryptococcus neoformans : evidence of same-sex mating in nature and hybrid fitness. PLoS Genet3:1975–1990
    [Google Scholar]
  24. Litvintseva A. P., Marra R. E., Nielsen K., Heitman J., Vilgalys R. J., Mitchell T. G.. 2003; Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot Cell2:1162–1168
    [Google Scholar]
  25. Litvintseva A. P., Thakur R., Vilgalys R., Mitchell T. G.. 2006; Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics172:2223–2238
    [Google Scholar]
  26. Loftus B. J., Fung E., Roncaglia P., Rowley D., Amedeo P., Bruno D., Vamathevan J., Miranda M., Anderson I. J.. other authors 2005; The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans . Science307:1321–1324
    [Google Scholar]
  27. Maynard-Smith J., Smith N. H., O'Rourke M., Spratt B. G.. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A90:4384–4388
    [Google Scholar]
  28. Nei M.. 1972; Genetic distance between populations. Am Nat106:283–292
    [Google Scholar]
  29. Nielsen K., Cox G. M., Wang P., Toffaletti D. L., Perfect J. R., Heitman J.. 2003; Sexual cycle of Cryptococcus neoformans variety grubii and virulence of congenic a and α isolates. Infect Immun71:4831–4841
    [Google Scholar]
  30. Randhawa H. S., Kowshik T., Khan Z. U.. 2003; Decayed wood of Syzygium cumini and Ficus religiosa living trees in Delhi/New Delhi metropolitan area as natural habitat of Cryptococcus neoformans . Med Mycol41:199–209
    [Google Scholar]
  31. Randhawa H. S., Kowshik T., Khan Z. U.. 2005; Efficacy of swabbing versus a conventional technique for isolation of Cryptococcus neoformans from decayed wood in tree trunk hollows. Med Mycol43:67–71
    [Google Scholar]
  32. Reimão J. Q., Drummond E. D., Terceti M. de. S., Lyon J. P., Franco M. C., de Siqueira A. M.. 2007; Isolation of Cryptococcus neoformans from hollows of living trees in the city of Alfenas, MG. Brazil. Mycoses50:261–264
    [Google Scholar]
  33. Swofford D. L.. 1996; Phylogenetic inference. In Molecular Systematics pp407–514 Edited by Hill D., Moritz C., Mable B. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x–Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res24:4876–4882
    [Google Scholar]
  35. Tintelnot K., Lemmer K., Losert H., Schar G., Polak A.. 2004; Follow-up of epidemiological data of cryptococcosis in Austria, Germany and Switzerland with special focus on the characterization of clinical isolates. Mycoses47:455–464
    [Google Scholar]
  36. Weir B. S.. 1996; Genetic Data Analysis II Sunderland: Sinauer;
    [Google Scholar]
  37. Weismann A.. 1904; The Evolution Theory 2 vols Translated from the 1904 2nd German edition by J. A. Thomson & M. R. Thomson London: Edward Arnold;
    [Google Scholar]
  38. Wright S.. 1938; Size of population and breeding structure in relation to evolution. Science87:430–431
    [Google Scholar]
  39. Xu J.. 2005a; Cost of interacting with sexual partners in a facultative sexual microbe. Genetics171:1597–1604
    [Google Scholar]
  40. Xu J.. 2005b; Evolutionary Genetics of Fungi UK: Horizon Bioscience;
    [Google Scholar]
  41. Xu J., Mitchell T. G.. 2003; Comparative gene genealogical analyses of strains of serotype AD identify recombination in populations of serotypes A and D in the human pathogenic yeast Cryptococcus neoformans . Microbiology149:2147–2154
    [Google Scholar]
  42. Xu J., Mitchell T. G., Vilgalys R.. 1999; PCR-restriction fragment length polymorphism (RFLP) analyses reveal both extensive clonality and local genetic differentiation in Candida albicans . Mol Ecol8:59–73
    [Google Scholar]
  43. Xu J., Vilgalys R., Mitchell T. D.. 2000; Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans . Mol Ecol9:1471–1481
    [Google Scholar]
  44. Xue C., Tada Y., Dong X., Heitman J.. 2007; The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe1:263–273
    [Google Scholar]
  45. Yan Z., Li X., Xu J.. 2002; Geographic distribution of mating type alleles of Cryptococcus neoformans in four areas of the United States. J Clin Microbiol40:965–972
    [Google Scholar]
  46. Yan Z., Hull C. M., Sun S., Heitman J., Xu J.. 2007; The mating type - specific homeodomain genes SXI1α and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans . Curr Genet51:187–195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015594-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015594-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error