1887

Abstract

One potential vaccine strategy in the fight against meningococcal disease involves the exploitation of outer-membrane components of , a commensal bacterium closely related to the meningococcus, . Although shares many surface structures with the meningococcus, little is known about the antigenic diversity of this commensal bacterium or the antigenic relationships between and . Here, the porin protein (Por) was examined and compared to the related PorB antigens of , to investigate potential involvement in anti-meningococcal immunity. Relationships among porin sequences were determined using distance-based methods and , and maximum-likelihood analyses were used to compare the selection pressures acting on the encoded proteins. These analyses demonstrated that the porin was less diverse than meningococcal PorB and although it was subject to positive selection, this was not as strong as the positive selection pressures acting on the meningococcal porin. In addition, the porin gene sequences and the protein sequences of the loop regions predicted to be exposed to the human immune system were dissimilar to the corresponding sequences in the meningococcus. This suggests that Por, contrary to previous suggestions, may have limited involvement in the development of natural immunity to meningococcal disease and might not be effective as a meningococcal vaccine component.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015479-0
2008-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1525.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015479-0&mimeType=html&fmt=ahah

References

  1. Achouak, W., Heulin, T. & Pages, J. M. ( 2001; ). Multiple facets of bacterial porins. FEMS Microbiol Lett 199, 1–7.[CrossRef]
    [Google Scholar]
  2. Bennett, J. S. ( 2006; ). The relationship of Neisseria lactamica to the pathogenic Neisseria: implications for vaccine development. DPhil thesis, Department of Zoology, University of Oxford, Oxford.
  3. Bennett, J. S., Griffiths, D. T., McCarthy, N. D., Sleeman, K. L., Jolley, K. A., Crook, D. W. & Maiden, M. C. ( 2005; ). Genetic diversity and carriage dynamics of Neisseria lactamica in infants. Infect Immun 73, 2424–2432.[CrossRef]
    [Google Scholar]
  4. Bennett, J. S., Jolley, K. A., Sparling, P. F., Saunders, N. J., Hart, C. A., Feavers, I. M. & Maiden, M. C. ( 2007; ). Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from MLST. BMC Biol 5, 35 [CrossRef]
    [Google Scholar]
  5. Bjune, G., Høiby, E. A., Grønnesby, J. K., Arnesen, O., Fredriksen, J. H., Halstensen, A., Holten, E., Lindbak, A. K., Nøkleby, H. & other authors ( 1991; ). Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338, 1093–1096.[CrossRef]
    [Google Scholar]
  6. Boslego, J., Garcia, J., Cruz, C., Zollinger, W., Brandt, B., Ruiz, S., Martinez, M., Arthur, J., Underwood, P. & other authors ( 1995; ). Efficacy, safety, and immunogenicity of a meningococcal group B (15 : P1.3) outer membrane protein vaccine in Iquique, Chile. Vaccine 13, 821–829.[CrossRef]
    [Google Scholar]
  7. Derrick, J. P., Urwin, R., Suker, J., Feavers, I. M. & Maiden, M. C. J. ( 1999; ). Structural and evolutionary inference from molecular variation in Neisseria porins. Infect Immun 67, 2406–2413.
    [Google Scholar]
  8. Feavers, I. M. & Maiden, M. C. J. ( 1998; ). A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Mol Microbiol 30, 647–656.[CrossRef]
    [Google Scholar]
  9. Finne, J., Bitter Suermann, D., Goridis, C. & Finne, U. ( 1987; ). An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol 138, 4402–4407.
    [Google Scholar]
  10. Finney, M., Vaughan, T., Taylor, S., Hudson, M. J., Pratt, C., Wheeler, J. X., Vipond, C., Feavers, I., Jones, C. & other authors ( 2007; ). Characterization of the key antigenic components and pre-clinical immune responses to a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Hum Vaccin 3
    [Google Scholar]
  11. Gill, M. J., Simjee, S., Al-Hattawi, K., Robertson, B. D., Easmon, C. S. & Ison, C. A. ( 1998; ). Gonococcal resistance to β-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 42, 2799–2803.
    [Google Scholar]
  12. Gold, R., Goldschneider, I., Lepow, M. L., Draper, T. F. & Randolph, M. ( 1978; ). Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J Infect Dis 137, 112–121.[CrossRef]
    [Google Scholar]
  13. Gorringe, A. R. ( 2005; ). Can Neisseria lactamica antigens provide an effective vaccine to prevent meningococcal disease? Expert Rev Vaccines 4, 373–379.[CrossRef]
    [Google Scholar]
  14. Gray, S. J., Trotter, C. L., Ramsay, M. E., Guiver, M., Fox, A. J., Borrow, R., Mallard, R. H. & Kaczmarski, E. B. ( 2006; ). Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: contribution and experiences of the Meningococcal Reference Unit. J Med Microbiol 55, 887–896.[CrossRef]
    [Google Scholar]
  15. Griffiss, J. M., Brandt, B. & Jarvis, G. A. ( 1987; ). Natural immunity to Neisseria meningitidis. In Evolution of Meningococcal Disease, vol. II, pp. 99–119. Edited by N. A. Vedros. Boca Raton, FL: CRC Press.
  16. Griffiss, J. M., Yamasaki, R., Estabrook, M. & Kim, J. J. ( 1991; ). Meningococcal molecular mimicry and the search for an ideal vaccine. Trans R Soc Trop Med Hyg 85 (Suppl 1), 32–36.[CrossRef]
    [Google Scholar]
  17. Guibourdenche, M., Popoff, M. Y. & Riou, J. Y. ( 1986; ). Deoxyribonucleic acid relatedness among Neisseria gonorrhoeae, N. meningitidis, N. lactamica, N. cinerea and “Neisseria polysaccharea”. Ann Inst Pasteur Microbiol 137B, 177–185.
    [Google Scholar]
  18. Jelfs, J., Munro, R., Wedege, E. & Caugant, D. A. ( 2000; ). Sequence variation in the porA gene of a clone of Neisseria meningitidis during epidemic spread. Clin Diagn Lab Immunol 7, 390–395.
    [Google Scholar]
  19. Jolley, K. A., Chan, M. S. & Maiden, M. C. ( 2004; ). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86 [CrossRef]
    [Google Scholar]
  20. Kim, J. J., Mandrell, R. E. & Griffiss, J. M. ( 1989; ). Neisseria lactamica and Neisseria meningitidis share lipooligosaccharide epitopes but lack common capsular and class 1, 2, and 3 protein epitopes. Infect Immun 57, 602–608.
    [Google Scholar]
  21. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  22. Kraulis, P. J. ( 1991; ). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24, 946–950.[CrossRef]
    [Google Scholar]
  23. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  24. Li, Y., Zhang, Q., Winterbotham, M., Mowe, E., Gorringe, A. & Tang, C. M. ( 2006; ). Immunization with live Neisseria lactamica protects mice against meningococcal challenge and can elicit serum bactericidal antibodies. Infect Immun 74, 6348–6355.[CrossRef]
    [Google Scholar]
  25. Linz, B., Schenker, M., Zhu, P. & Achtman, M. ( 2000; ). Frequent interspecific genetic exchange between commensal neisseriae and Neisseria meningitidis. Mol Microbiol 36, 1049–1058.[CrossRef]
    [Google Scholar]
  26. Maiden, M. C. J., Suker, J., McKenna, A. J., Bygraves, J. A. & Feavers, I. M. ( 1991; ). Comparison of the class 1 outer membrane proteins of eight serological reference strains of Neisseria meningitidis. Mol Microbiol 5, 727–736.[CrossRef]
    [Google Scholar]
  27. Majewski, J. ( 2001; ). Sexual isolation in bacteria. FEMS Microbiol Lett 199, 161–169.[CrossRef]
    [Google Scholar]
  28. Oliver, K. J., Reddin, K. M., Bracegirdle, P., Hudson, M. J., Borrow, R., Feavers, I. M., Robinson, A., Cartwright, K. & Gorringe, A. R. ( 2002; ). Neisseria lactamica protects against experimental meningococcal infection. Infect Immun 70, 3621–3626.[CrossRef]
    [Google Scholar]
  29. Rudel, T., Schmid, A., Benz, R., Kolb, H. A., Lang, F. & Meyer, T. F. ( 1996; ). Modulation of Neisseria porin (PorB) by cytosolic ATP/GTP of target cells: parallels between pathogen accommodation and mitochondrial endosymbiosis. Cell 85, 391–402.[CrossRef]
    [Google Scholar]
  30. Russell, J. E., Jolley, K. A., Feavers, I. M., Maiden, M. C. & Suker, J. ( 2004; ). PorA variable regions of Neisseria meningitidis. Emerg Infect Dis 10, 674–678.[CrossRef]
    [Google Scholar]
  31. Sali, A., Potterton, L., Yuan, F., van Vlijmen, H. & Karplus, M. ( 1995; ). Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326.[CrossRef]
    [Google Scholar]
  32. Schifman, R. B. & Ryan, K. J. ( 1983; ). Neisseria lactamica septicemia in an immunocompromised patient. J Clin Microbiol 17, 934–935.
    [Google Scholar]
  33. Schirmer, T. ( 1998; ). General and specific porins from bacterial outer membranes. J Struct Biol 121, 101–109.[CrossRef]
    [Google Scholar]
  34. Schneider, S., Roessli, D. & Excoffier, L. ( 2000; ). Arlequin version 2.000: a software for population genetic data analysis. Geneva: University of Geneva.
  35. Staden, R. ( 1996; ). The Staden sequence analysis package. Mol Biotechnol 5, 233–241.[CrossRef]
    [Google Scholar]
  36. Suker, J. ( 1997; ). Variation of meningococcal porin antigens. PhD thesis, Department of Biochemistry, Royal Free Hospital School of Medicine, University of London.
  37. Swofford, D. ( 1998; ). paup*: Phylogenetic analysis using parsimony (and other methods). Sunderland, MA: Sinauer Associates.
  38. Tang, C., Moxon, R. & Levine, M. M. ( 1999; ). For discussion: live attenuated vaccines for group B meningococcus. Vaccine 17, 114–117.[CrossRef]
    [Google Scholar]
  39. Troncoso, G., Sanchez, S., Moreda, M., Criado, M. T. & Ferreiros, C. M. ( 2000; ). Antigenic cross-reactivity between outer membrane proteins of Neisseria meningitidis and commensal Neisseria species. FEMS Immunol Med Microbiol 27, 103–109.[CrossRef]
    [Google Scholar]
  40. Troncoso, G., Sanchez, S., Criado, M. T. & Ferreiros, C. M. ( 2002; ). Analysis of Neisseria lactamica antigens putatively implicated in acquisition of natural immunity to Neisseria meningitidis. FEMS Immunol Med Microbiol 34, 9–15.[CrossRef]
    [Google Scholar]
  41. Urwin, R., Holmes, E. C., Fox, A. J., Derrick, J. P. & Maiden, M. C. ( 2002; ). Phylogenetic evidence for frequent positive selection and recombination in the meningococcal surface antigen PorB. Mol Biol Evol 19, 1686–1694.[CrossRef]
    [Google Scholar]
  42. van der Ley, P., Heckels, J. E., Virji, M., Hoogerhout, P. & Poolman, J. T. ( 1991; ). Topology of outer membrane porins in pathogenic Neisseria species. Infect Immun 59, 2963–2971.
    [Google Scholar]
  43. van der Ley, P., van der Biezen, J. & Poolman, J. T. ( 1995; ). Construction of Neisseria meningitidis strains carrying multiple chromosomal copies of the porA gene for use in the production of a multivalent outer membrane vesicle vaccine. Vaccine 13, 401–407.[CrossRef]
    [Google Scholar]
  44. Ward, M. J., Lambden, P. R. & Heckels, J. E. ( 1992; ). Sequence analysis and relationships between meningococcal class 3 serotype proteins and other porins of pathogenic and non- pathogenic Neisseria species. FEMS Microbiol Lett 94, 283–290.[CrossRef]
    [Google Scholar]
  45. Wilson, H. D. & Overman, T. L. ( 1976; ). Septicemia due to Neisseria lactamica. J Clin Microbiol 4, 214–215.
    [Google Scholar]
  46. Womble, D. D. ( 2000; ). GCG: the Wisconsin Package of sequence analysis programs. Methods Mol Biol 132, 3–22.
    [Google Scholar]
  47. Yang, Z. ( 1997; ). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
  48. Zeth, K., Diederichs, K., Welte, W. & Engelhardt, H. ( 2000; ). Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2. Å resolution. Structure 8, 981–992.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015479-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015479-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error