1887

Abstract

Previous studies have shown that requires the outer-membrane, multicopper protein OmpB for Fe(III) oxide reduction. A homologue of OmpB, designated OmpC, which is 36 % similar to OmpB, has been discovered in the genome. Deletion of inhibited reduction of insoluble, but not soluble Fe(III). Analysis of multiple and genomes, as well as , indicated that genes encoding multicopper proteins are conserved in species but are not found in species. Levels of transcripts were similar in at different growth rates in chemostats and during growth on a microbial fuel cell anode. In contrast, transcript levels increased at higher growth rates in chemostats and with increasing current production in fuel cells. Constant levels of transcripts were detected in groundwater during a field experiment in which acetate was added to the subsurface to promote uranium bioremediation. In contrast, transcript levels increased during the rapid phase of growth of species following addition of acetate to the groundwater and then rapidly declined. These results demonstrate that more than one multicopper protein is required for optimal Fe(III) oxide reduction in and suggest that, in environmental studies, quantifying OmpB/OmpC-related genes could help alleviate the problem that genes may be inadvertently quantified via quantitative analysis of 16S rRNA genes. Furthermore, comparison of differential expression of and may provide insight into the metabolic state of species in environments of interest.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014365-0
2008-05-01
2020-02-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1422.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014365-0&mimeType=html&fmt=ahah

References

  1. Adams L. F., Ghiorse W. C.. 1987; Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol169:1279–1285
    [Google Scholar]
  2. Afkar E., Reguera G., Schiffer M., Lovley D. R.. 2005; A novel Geobacteraceae -specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens . BMC Microbiol5:41
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  4. Anderson R. T., Vrionis H. A., Ortiz-Bernad I., Resch C. T., Long P. E., Dayvault R., Karp K., Marutzky S., Metzler D. R.. other authors 2003; Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol69:5884–5891
    [Google Scholar]
  5. Askwith C. C., Kaplan J.. 1998; Site-directed mutagenesis of the yeast multicopper oxidase Fet3p. J Biol Chem273:22415–22419
    [Google Scholar]
  6. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev43:260–296
    [Google Scholar]
  7. Barrett E., Holmes D. E., Mouser P. J., Chavan M. A., Larrahondo M. J., Adams L. A., Lovley D. R.. 2007; Monitoring the growth rate of Geobacter species in groundwater via analysis of gene transcript levels. InAbstracts: American Society for Microbiology 107th General MeetingToronto, Canada Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Bond D. R., Lovley D. R.. 2003; Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol69:1548–1555
    [Google Scholar]
  9. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R.. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science295:483–485
    [Google Scholar]
  10. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S.. 1992; Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A89:2002–2006
    [Google Scholar]
  11. Brouwers G. J., de Vrind J. P. M., Corstjens P. L. A. M., Cornelis P., Baysse C., DeJong E. W. D. V.. 1999; cumA , a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol65:1762–1768
    [Google Scholar]
  12. Brouwers G. J., Vijgenboom E., Corstjens P. L. A. M., De Vrind J. P. M., de Vrind-de Jong E. W.. 2000; Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions. Geomicrobiol J17:1–24
    [Google Scholar]
  13. Brown N. P., Leroy C., Sander C.. 1998; MView: a web-compatible database search or multiple alignment viewer. Bioinformatics14:380–381
    [Google Scholar]
  14. Butler J. E., Kaufmann F., Coppi M. V., Nunez C., Lovley D. R.. 2004; MacA, a diheme c -type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens . J Bacteriol186:4042–4045
    [Google Scholar]
  15. Chang Y. J., Long P. E., Geyer R., Peacock A. D., Resch C. T., Sublette K., Pfiffner S., Smithgall A., Anderson R. T.. other authors 2005; Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI. Environ Sci Technol39:9039–9048
    [Google Scholar]
  16. Childers S. E., Ciufo S., Lovley D. R.. 2002; Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature416:767–769
    [Google Scholar]
  17. Chin K. J., Esteve-Nunez A., Leang C., Lovley D. R.. 2004; Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens . Appl Environ Microbiol70:5183–5189
    [Google Scholar]
  18. Claus H.. 2003; Laccases and their occurrence in prokaryotes. Arch Microbiol179:145–150
    [Google Scholar]
  19. Coates J. D., Cole K. A., Michaelidou U., Patrick J., McInerney M. J., Achenbach L. A.. 2005; Biological control of hog waste odor through stimulated microbial Fe(III) reduction. Appl Environ Microbiol71:4728–4735
    [Google Scholar]
  20. Coppi M. V., Leang C., Sandler S. J., Lovley D. R.. 2001; Development of a genetic system for Geobacter sulfurreducens . Appl Environ Microbiol67:3180–3187
    [Google Scholar]
  21. Corstjens P. L. A. M., Devrind J. P. M., Westbroek P., Devrinddejong E. W.. 1992; Enzymatic iron oxidation by Leptothrix discophora – identification of an iron-oxidizing protein. Appl Environ Microbiol58:450–454
    [Google Scholar]
  22. Dick G. J., Lee Y. E., Tebo B. M.. 2006; Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Appl Environ Microbiol72:3184–3190
    [Google Scholar]
  23. DiDonato L. N., Sullivan S. A., Methe B. A., Nevin K. P., England R., Lovley D. R.. 2006; Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens . J Bacteriol188:8469–8478
    [Google Scholar]
  24. Eck R., Hundt S., Hartl A., Roemer E., Kunkel W.. 1999; A multicopper oxidase gene from Candida albicans : cloning, characterization and disruption. Microbiology145:2415–2422
    [Google Scholar]
  25. Emanuelsson O., Brunak S., von Heijne G., Nielsen H.. 2007; Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc2:953–971
    [Google Scholar]
  26. Esteve-Nunez A., Rothermich M., Sharma M., Lovley D.. 2005; Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol7:641–648
    [Google Scholar]
  27. Francis C. A., Co E. M., Tebo B. M.. 2001; Enzymatic manganese(II) oxidation by a marine alpha-proteobacterium. Appl Environ Microbiol67:4024–4029
    [Google Scholar]
  28. Francis C. A., Casciotti K. L., Tebo B. M.. 2002; Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch Microbiol178:450–456
    [Google Scholar]
  29. Gardy J. L., Spencer C., Wang K., Ester M., Tusnády G. E., Simon I., Hua S., deFays K., Lambert C.. other authors 2003; psort-b: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res31:3613–3617
    [Google Scholar]
  30. Ghiorse W. C.. 1988; Microbial reduction of manganese and iron. In Biology of Anaerobic Microorganisms pp305–331 Edited by Zehnder A. J. B.. New York: John Wiley & Sons;
    [Google Scholar]
  31. Hasegawa M., Kiwshino H., Yano T.. 1985; Dating the human–ape split by molecular clock of mitochondrial DNA. J Mol Evol22:160–174
    [Google Scholar]
  32. Haveman S. A., Holmes D. E., Ding Y. H., Ward J. E., Didonato R. J. Jr, Lovley D. R.. 2006; c -Type cytochromes in Pelobacter carbinolicus . Appl Environ Microbiol72:6980–6985
    [Google Scholar]
  33. Hofmann K., Stoffel W.. 1993; TMbase – a database of membrane-spanning protein segments. Biol Chem Hoppe Seyler374:166:
    [Google Scholar]
  34. Holmes D. E., Finneran K. T., O'Neil R. A., Lovley D. R.. 2002; Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol68:2300–2306
    [Google Scholar]
  35. Holmes D. E., Nevin K. P., Lovley D. R.. 2004a; Comparison of 16S rRNA, nifD , recA , gyrB , rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol54:1591–1599
    [Google Scholar]
  36. Holmes D. E., Nevin K. P., Lovley D. R.. 2004b; In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol70:7251–7259
    [Google Scholar]
  37. Holmes D. E., Nevin K. P., O'Neil R. A., Ward J. E., Adams L. A., Woodard T. L., Vrionis H. A., Lovley D. R.. 2005; Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl Environ Microbiol71:6870–6877
    [Google Scholar]
  38. Holmes D. E., Chaudhuri S. K., Nevin K. P., Mehta T., Methé B. A., Liu A., Ward J. E., Woodard T. L., Webster J., Lovley D. R.. 2006; Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens . Environ Microbiol8:1805–1815
    [Google Scholar]
  39. Holmes D. E., O'Neil R. A., Vrionis H. A., N'guessan L. A., Ortiz-Bernad I., Larrahondo M. J., Adams L. A., Ward J. A., Nicoll J. S.. other authors 2007; Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J1:663–677
    [Google Scholar]
  40. Hullo M. F., Moszer I., Danchin A., Martin-Verstraete I.. 2001; CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol183:5426–5430
    [Google Scholar]
  41. Istok J. D., Senko J. M., Krumholz L. R., Watson D., Bogle M. A., Peacock A., Chang Y. J., White D. C.. 2004; In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol38:468–475
    [Google Scholar]
  42. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  43. Kim B. C., Leang C., Ding Y. H., Glaven R. H., Coppi M. V., Lovley D. R.. 2005; OmcF, a putative c -type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens . J Bacteriol187:4505–4513
    [Google Scholar]
  44. Kim B. C., Qian X., Leang C., Coppi M. V., Lovley D. R.. 2006; Two putative c -type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens . J Bacteriol188:3138–3142
    [Google Scholar]
  45. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176
    [Google Scholar]
  46. Larsen E. I., Sly L. I., McEwan A. G.. 1999; Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol171:257–264
    [Google Scholar]
  47. Leang C., Lovley D. R.. 2005; Regulation of two highly similar genes, omcB and omcC , in a 10 kb chromosomal duplication in Geobacter sulfurreducens . Microbiology151:1761–1767
    [Google Scholar]
  48. Leang C., Coppi M. V., Lovley D. R.. 2003; OmcB, a c -type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens . J Bacteriol185:2096–2103
    [Google Scholar]
  49. Lin B., Braster M., van Breukelen B. M., van Verseveld H. W., Westerhoff H. V., Roling W. F.. 2005; Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl Environ Microbiol71:5983–5991
    [Google Scholar]
  50. Lloyd J. R., Leang C., Hodges Myerson A. L., Coppi M. V., Cuifo S., Methe B., Sandler S. J., Lovley D. R.. 2003; Biochemical and genetic characterization of PpcA, a periplasmic c -type cytochrome in Geobacter sulfurreducens . Biochem J369:153–161
    [Google Scholar]
  51. Lovley D. R.. 2002; Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter. OMICS6:331–339
    [Google Scholar]
  52. Lovley D. R.. 2003; Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol1:35–44
    [Google Scholar]
  53. Lovley D. R.. 2006; Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol4:497–508
    [Google Scholar]
  54. Lovley D. R., Phillips E. J. P., Lonergan D. J., Widman P. K.. 1995; Fe(III) and  ° reduction by Pelobacter carbinolicus . Appl Environ Microbiol61:2132–2138
    [Google Scholar]
  55. Lovley D. R., Holmes D. E., Nevin K. P.. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol49:219–286
    [Google Scholar]
  56. Martins L. O., Soares C. M., Pereira M. M., Teixeira M., Costa T., Jones G. H., Henriques A. O.. 2002; Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem277:18849–18859
    [Google Scholar]
  57. Mehta T., Coppi M. V., Childers S. E., Lovley D. R.. 2005; Outer membrane c -type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens . Appl Environ Microbiol71:8634–8641
    [Google Scholar]
  58. Mehta T., Childers S. E., Glaven R., Lovley D. R., Mester T.. 2006; A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens . Microbiology152:2257–2264
    [Google Scholar]
  59. Methe B. A., Nelson K. E., Eisen J. A., Paulsen I. T., Nelson W., Heidelberg J. F., Wu D., Wu M., Ward N.. other authors 2003; Genome of Geobacter sulfurreducens : metal reduction in subsurface environments. Science302:1967–1969
    [Google Scholar]
  60. Miyata N., Tani Y., Maruo K., Tsuno H., Sakata M., Iwahori K.. 2006; Manganese(IV) oxide production by Acremonium sp. strain KR21–2 and extracellular Mn(II) oxidase activity. Appl Environ Microbiol72:6467–6473
    [Google Scholar]
  61. Nakamura K., Go N.. 2005; Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci62:2050–2066
    [Google Scholar]
  62. North N. N., Dollhopf S. L., Petrie L., Istok J. D., Balkwill D. L., Kostka J. E.. 2004; Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol70:4911–4920
    [Google Scholar]
  63. Nottingham P. M., Hungate R. E.. 1969; Methanogenic fermentation of benzoate. J Bacteriol98:1170–1172
    [Google Scholar]
  64. O'Neil R. A., Holmes D. E., Coppi M. V., Adams L. A., Larrahondo M. J., Ward J. E., Nevin K. P., Woodard T. L., Vrionis H. A.. other authors 2008; Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation. Environ Microbiol in press
    [Google Scholar]
  65. Pearson W. R.. 1990; Rapid and sensitive sequence comparisons with fastp and fasta. Methods Enzymol183:63–98
    [Google Scholar]
  66. Petrie L., North N. N., Dollhopf S. L., Balkwill D. L., Kostka J. E.. 2003; Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI. Appl Environ Microbiol69:7467–7479
    [Google Scholar]
  67. Qian X., Reguera G., Mester T., Lovley D. R.. 2007; Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol Lett277:21–27
    [Google Scholar]
  68. Quintanar L., Stoj C., Taylor A. B., Hart P. J., Kosman D. J., Solomon E. I.. 2007; Shall we dance? How a multicopper oxidase chooses its electron transfer partner. Acc Chem Res40:445–452
    [Google Scholar]
  69. Reguera G., McCarthy K. D., Mehta T., Nicoll J. S., Tuominen M. T., Lovley D. R.. 2005; Extracellular electron transfer via microbial nanowires. Nature435:1098–1101
    [Google Scholar]
  70. Rice P., Longden I., Bleasby A.. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet16:276–277
    [Google Scholar]
  71. Richter H., Lanthier M., Nevin K. P., Lovley D. R.. 2007; Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl Environ Microbiol73:5347–5353
    [Google Scholar]
  72. Ridge J. P., Lin M., Larsen E. I., Fegan M., McEwan A. G., Sly L. I.. 2007; A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp ACM 3067. Environ Microbiol9:944–953
    [Google Scholar]
  73. Risso C., DiDonato R. J., Postier B., Valinotto L., Lovley D. R.. 2007; Metabolic changes associated with slow versus fast growth in Geobacter sulfurreducens . InAbstracts: American Society for Microbiology 107th General MeetingToronto, Canada Washington, DC: American Society for Microbiology;
    [Google Scholar]
  74. Rooney-Varga J. N., Anderson R. T., Fraga J. L., Ringelberg D., Lovley D. R.. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol65:3056–3063
    [Google Scholar]
  75. Schaffer A. A., Aravind L., Madden T. L., Shavirin S., Spouge J. L., Wolf Y. I., Koonin E. V., Altschul S. F.. 2001; Improving the accuracy of psi-blast protein database searches with composition-based statistics and other refinements. Nucleic Acids Res29:2994–3005
    [Google Scholar]
  76. Shelobolina E. S., Coppi M. V., Korenevsky A. A., DiDonato L. N., Sullivan S. A., Konishi H., Xu H., Leang C., Butler J. E.. other authors 2007; Importance of c -type cytochromes for U(VI) reduction by Geobacter sulfurreducens . BMC Microbiol7:16
    [Google Scholar]
  77. Sitthisak S., Howieson K., Amezola C., Jayaswal R. K.. 2005; Characterization of a multicopper oxidase gene from Staphylococcus aureus . Appl Environ Microbiol71:5650–5653
    [Google Scholar]
  78. Sleep B. E., Seepersad D. J., Kaiguo M. O., Heidorn C. M., Hrapovic L., Morrill P. L., McMaster M. L., Hood E. D., Lebron C.. other authors 2006; Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol40:3623–3633
    [Google Scholar]
  79. Stults J. R., Snoeyenbos-West O. L., Methe B., Lovley D. R., Chandler D. P.. 2001; Application of the 5′ fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microbiol67:2781–2789
    [Google Scholar]
  80. Swofford D. L.. 1998; paup*. Phylogenetic Analysis Using Parsimony (*and other methods) Version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  81. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  82. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  83. Vrionis H. A., Anderson R. T., Ortiz-Bernad I., O'Neill K. R., Resch C. T., Peacock A. D., Dayvault R., White D. C., Long P. E., Lovley D. R.. 2005; Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol71:6308–6318
    [Google Scholar]
  84. Winderl C., Schaefer S., Lueders T.. 2007; Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase ( bssA ) genes as a functional marker. Environ Microbiol9:1035–1046
    [Google Scholar]
  85. Yan B., Methe B. A., Lovley D. R., Krushkal J.. 2004; Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae . J Theor Biol230:133–144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014365-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014365-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error