1887

Abstract

Light is a fundamental abiotic factor which stimulates growth and development of the majority of living organisms. In soil saprotrophic fungi, light is primarily known to influence morphogenesis, particularly sexual and asexual spore formation. Here we present a new function of light, the enhancement of mycelial growth. The photostimulated mycelial growth of the soil fungus was detected on 17 (out of 95 tested carbon sources) carbohydrates and polyols, which are metabolically related to cellulose and hemicelluloses, and which are mainly available in the upper soil litter layer. This stimulation depends differently on the function of the two blue light receptor proteins BLR-1 and BLR-2, respectively, BLR-1 being responsible for carbon source selectivity and response to permanent light. Evocation of oxidative stress response in darkness imitates the photostimulation on nine of these carbon sources, and this effect was fully dependent on the function of BLR-1. We conclude that light in combination with the availability of litter-specific carbon sources serves as a signal for the fungus to be above ground, thereby stimulating fast growth in order to produce a maximum of propagules in the shortest time. We further deduce that this process involves oxidative stress response and the two blue light receptor proteins BLR-1 and BLR-2, the former playing the major role.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014175-0
2008-04-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1229.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014175-0&mimeType=html&fmt=ahah

References

  1. Albersheim P., An J., Freshour G., Fuller M. S., Guillen R., Ham K. S., Hahn M. G., Huang J., O'Neill M. other authors 1994; Structure and function studies of plant cell wall polysaccharides. Biochem Soc Trans 22:374–378
    [Google Scholar]
  2. Ambra R., Grimaldi B., Zamboni S., Filetici P., Macino G., Ballario P. 2004; Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa. Fungal Genet Biol 41:688–697
    [Google Scholar]
  3. Aro N., Pakula T., Penttila M. 2005; Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739
    [Google Scholar]
  4. Arrach N., Fernandez-Martin R., Cerda-Olmedo E., Avalos J. 2001; A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci U S A 98:1687–1692
    [Google Scholar]
  5. Berrocal-Tito G., Sametz-Baron L., Eichenberg K., Horwitz B. A., Herrera-Estrella A. 1999; Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274:14288–14294
    [Google Scholar]
  6. Betina V., Farkas V. 1998; Sporulation and light-induced development in Trichoderma. In Trichoderma and Gliocladium, vol. 1, Basic Biology, Taxonomy and Genetics pp 75–94 Edited by Kubicek C. P., Harman G. E. London: Taylor & Francis;
    [Google Scholar]
  7. Brasch J., Kay C. 2006; Effects of repeated low-dose UVB irradiation on the hyphal growth of Candida albicans. Mycoses 49:1–5
    [Google Scholar]
  8. Casas-Flores S., Rios-Momberg M., Bibbins M., Ponce-Noyola P., Herrera-Estrella A. 2004; BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–3569
    [Google Scholar]
  9. Casas-Flores S., Rios-Momberg M., Rosales-Saavedra T., Martinez-Hernandez P., Olmedo-Monfil V., Herrera-Estrella A. 2006; Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506
    [Google Scholar]
  10. Cerdá-Olmedo E., Corrochano L. 2001; Genetics of Phycomyces and its responses to light. In Photomovement vol. 1 pp 589–620 Edited by Hader D. P., Lebert M. Amsterdam: Elsevier;
    [Google Scholar]
  11. Chen C., Dickman M. B. 2002; Colletotrichum trifolii TB3 kinase, a COT1 homologue, is light inducible and becomes localized in the nucleus during hyphal elongation. Eukaryot Cell 1:626–633
    [Google Scholar]
  12. Chovanec P., Hudecova D., Varecka L. 2001; Vegetative growth, aging- and light-induced conidiation of Trichoderma viride cultivated on different carbon sources. Folia Microbiol (Praha 46:417–422
    [Google Scholar]
  13. Corrochano L. M. 2007; Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6:725–736
    [Google Scholar]
  14. Druzhinina I. S., Schmoll M., Seiboth B., Kubicek C. P. 2006; Global carbon utilization profiles of wild-type, mutants and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72:2126–2133
    [Google Scholar]
  15. Esquivel-Naranjo E. U., Herrera-Estrella A. 2007; Enhanced responsiveness and sensitivity to blue light by blr-2 overexpression in Trichoderma atroviride. Microbiology 153:3909–3922
    [Google Scholar]
  16. Farkas V., Betina V. 1997; The intracellular level of ATP during the photoinduced sporulation of Trichoderma viride. Folia Microbiol (Praha 22:438
    [Google Scholar]
  17. Flaherty J. E., Dunkle L. D. 2005; Identification and expression analysis of regulatory genes induced during conidiation in Exserohilum turcicum. Fungal Genet Biol 42:471–481
    [Google Scholar]
  18. Gresik M., Kolarova N., Farkas V. 1989; Light-stimulated phosphorylation of proteins in cell-free extracts from Trichoderma viride. FEBS Lett 248:185–187
    [Google Scholar]
  19. Gresik M., Kolarova N., Farkas V. 1991; Hyperpolarization and intracellular acidification in Trichoderma viride as a response to illumination. J Gen Microbiol 137:2605–2609
    [Google Scholar]
  20. Gressel J., Strausbauch L., Galun E. 1971; Photomimetic effect of acetylcholine on morphogenesis in Trichoderma. Nature 232:648–649
    [Google Scholar]
  21. Hahn J. S., Neef D. W., Thiele D. J. 2006; A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60:240–251
    [Google Scholar]
  22. He Q., Shu H., Cheng P., Chen S., Wang L., Liu Y. 2005; Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop. J Biol Chem 280:17526–17532
    [Google Scholar]
  23. Hill E. P. 1976; Effect of light on growth and sporulation of Aspergillus ornatus. J Gen Microbiol 95:39–44
    [Google Scholar]
  24. Hong S. P., Carlson M. 2007; Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem 282:16838–16845
    [Google Scholar]
  25. Idnurm A., Heitman J. 2005; Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95
    [Google Scholar]
  26. Iigusa H., Yoshida Y., Hasunuma K. 2005; Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett 579:4012–4016
    [Google Scholar]
  27. Klein D., Eveleigh D. E. 1998; Ecology of Trichoderma. In Trichoderma and Gliocladium, vol. 1, Basic Biology, Taxonomy and Genetics pp 57–73 Edited by Kubicek C. P., Harman G. E. London: Taylor & Francis;
    [Google Scholar]
  28. Lauter F., Yamashiro C. T., Yanofsky C. 1997; Light stimulation of conidiation in Neurospora crassa: studies with the wild-type strain and mutants wc-1, wc-2 and acon-2. J Photochem Photobiol 37:203–211
    [Google Scholar]
  29. Lauter F. R., Marchfelder U., Russo V. E. A., Yamashiro C. T., Yatzkan E., Yarden O. 1998; Photoregulation of cot-1, a kinase-encoding gene involved in hyphal growth in Neurospora crassa. Fungal Genet Biol 23:300–310
    [Google Scholar]
  30. Li C., Schmidhauser T. J. 1995; Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol 169:90–95
    [Google Scholar]
  31. Linden H. 2002; Circadian rhythms. A white-collar protein senses blue light. Science 297:777–778
    [Google Scholar]
  32. Linden H., Ballario P., Macino G. 1997; Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150
    [Google Scholar]
  33. Liu Y., He Q., Cheng P. 2003; Photoreception in Neurospora: a tale of two white collar proteins. Cell Mol Life Sci 60:2131–2138
    [Google Scholar]
  34. Magherini F., Tani C., Gamberi T., Caselli A., Bianchi L., Bini L., Modesti A. 2007; Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2 . Proteomics 7:1434–1445
    [Google Scholar]
  35. Michan S., Lledias F., Hansberg W. 2003; Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell 2:798–808
    [Google Scholar]
  36. Miyake T., Mori A., Kii T., Okuno T., Usui Y., Sato F., Sammoto H., Watanabe A., Kariyama M. 2005; Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotechnol 32:103–108
    [Google Scholar]
  37. Nagahashi G., Douds D. D. Jr 2003; Action spectrum for the induction of hyphal branches of an arbuscular mycorrhizal fungus: exposure sites versus branching sites. Mycol Res 107:1075–1082
    [Google Scholar]
  38. Nagahashi G., Douds D. D. Jr 2004; Synergism between blue light and root exudate compounds and evidence for a second messenger in the hyphal branching response of Gigaspora gigantea. Mycologia 96:948–954
    [Google Scholar]
  39. Noventa-Jordao M. A., Couto R. M., Goldman M. H., Aguirre J., Iyer S., Caplan A., Terenzi H. F., Goldman G. H. 1999; Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology 145:3229–3234
    [Google Scholar]
  40. Pawlowska T. E., Charvat I. 2004; Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649
    [Google Scholar]
  41. Pocsi I., Miskei M., Karanyi Z., Emri T., Ayoubi P., Pusztahelyi T., Balla G., Prade R. A. 2005; Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology. BMC Genomics 6:182
    [Google Scholar]
  42. Reithner B., Brunner K., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S. 2005; The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760
    [Google Scholar]
  43. Saudohar M., Bencina M., van de Vondervoort P. J., Panneman H., Legisa M., Visser J., Ruijter G. J. 2002; Cyclic AMP-dependent protein kinase is involved in morphogenesis of Aspergillus niger. Microbiology 148:2635–2645
    [Google Scholar]
  44. Schmoll M., Franchi L., Kubicek C. P. 2005; The Hypocrea jecorina PAS/LOV domain protein ENVOY renders cellulase gene expression light-dependent. Eukaryot Cell 4:1998–2007
    [Google Scholar]
  45. Schreckenbach T., Walckhoff B., Verfuerth C. 1981; Blue-light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. Proc Natl Acad Sci U S A 78:1009–1013
    [Google Scholar]
  46. Schuller H. J. 2003; Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160
    [Google Scholar]
  47. Seiboth B., Hartl L., Pail M., Kubicek C. P. 2003; d-Xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded l-arabinitol-4-dehydrogenase. Eukaryot Cell 2:867–875
    [Google Scholar]
  48. Seidl V., Druzhinina I. S., Kubicek C. P. 2006; A global screening for carbon sources stimulating N-acetyl- β-d-glucosaminidase formation in Trichoderma atroviride. Microbiology 152:2003–2012
    [Google Scholar]
  49. Sulová Z., Farkás V. 1991; Photoinduced conidiation in Trichoderma viride: a study with inhibitors. Folia Microbiol (Praha 36:267–270
    [Google Scholar]
  50. Tan K. K. 1978; Light-induced fungal development. In The Filamentous Fungi vol 3 pp 334–357 Edited by Smith J. E., Berry D. R. London: Edward Arnold;
    [Google Scholar]
  51. Terenzi H. F., Flawia M. M., Tellez-Inon M. T., Torres H. N. 1976; Control of Neurospora crassa morphology by cyclic adenosine 3′,5′-monophosphate and dibutyryl cyclic adenosine 3′,5′-monophosphate. J Bacteriol 126:91–99
    [Google Scholar]
  52. Vitalini M. W., de Paula R. M., Goldsmith C. S., Jones C. A., Borkovich K. A., Bell-Pedersen D. 2007; Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci U S A 104:18223–18228
    [Google Scholar]
  53. Yamamoto A., Ueda J., Yamamoto N., Hashikawa N., Sakurai H. 2007; Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 6:1373–1379
    [Google Scholar]
  54. Yoshida Y., Hasunuma K. 2004; Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem 279:6986–6993
    [Google Scholar]
  55. Zhao W., Panepinto J. C., Fortwendel J. R., Fox L., Oliver B. G., Askew D. S., Rhodes J. C. 2006; Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect Immun 74:4865–4874
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014175-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014175-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error