1887

Abstract

Intensive study of gene diversity of bioactive compounds in a wood-rot fungus, sp. BCC1067, has made it possible to identify polyketides and nonribosomal peptides (NRPs) unaccounted for by conventional chemical screening methods. Here we report the complete nonribosomal peptide synthetase (NRPS) gene responsible for the biosynthesis of an NRP, bassianolide, using a genetic approach. Isolation of the bassianolide biosynthetic gene, , was achieved using degenerate primers specific to the adenylation domain of NRPS. The complete ORF of is 10.6 kb in length. Based on comparisons with other known NRPSs, the domain arrangement of NRPSXY is most likely to be C-A-T-C-A-M-T-T-C-R. The other ORF found upstream of , designated , is 1.8 kb in length and shows high similarity to members of the major facilitator superfamily of transporters. Functional analysis of the gene was conducted by gene disruption, and the missing metabolite in the mutant was identified. Chemical analysis revealed the structure of the metabolite to be a cyclooctadepsipeptide, bassianolide, which has been found in other fungi. A bioassay of bassianolide revealed a wide range of biological activities other than insecticidal uses, which have been previously reported, thus making bassianolide an interesting candidate for future structural modification. This study is the first evidence for a gene involved in the biosynthesis of bassianolide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013995-0
2008-04-01
2021-03-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/995.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013995-0&mimeType=html&fmt=ahah

References

  1. Amnuaykanjanasin A., Punya J., Paungmoung P., Rungrod A., Tachaleat A., Pongpattanakitshote S., Cheevadhanarak S., Tanticharoen M.. 2005; Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC1067. FEMS Microbiol Lett251:125–136
    [Google Scholar]
  2. Brakhage A. A.. 1997; Molecular regulation of penicillin biosynthesis in Aspergillus ( Emericella) nidulans. FEMS Microbiol Lett148:1–10
    [Google Scholar]
  3. Champlin F. R., Grula E. A.. 1979; Noninvolvement of beauvericin in the entomopathogenicity of Beauveria bassiana. Appl Environ Microbiol37:1122–1126
    [Google Scholar]
  4. Cheevadhanarak S., Renno D. V., Saunders G., Holt G., Flegel T. W.. 1991; Cloning and overexpression of an alkaline protease-encoding gene from Aspergillus oryzae with a dominant selectable marker. Gene108:151–155
    [Google Scholar]
  5. Cramer R. A. Jr, Stajich J. S., Yamanaka Y., Dietrich F. E., Steinbach W. J., Perfect J. R.. 2006a; Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene383:24–32
    [Google Scholar]
  6. Cramer R. A. Jr, Gamcsik M. P., Brooking R. M., Najvar L. K., Kirkpatrick W. R., Patterson T. F., Balibar C. J., Graybill J. R., Perfect J. R.. other authors 2006b; Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell5:972–980
    [Google Scholar]
  7. Haese A., Schubert M., Herrmann M., Zocher R.. 1993; Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalyzing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol7:905–914
    [Google Scholar]
  8. Haese A., Pieper R., Ostrowski T., Zocher R.. 1994; Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase. J Mol Biol243:116–122
    [Google Scholar]
  9. Hayashi K., Schoonbeek H. J., De Waard M. A.. 2002; Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol68:4996–5004
    [Google Scholar]
  10. Hissen A. H. T., Wan A. N. C., Warwas M. L., Pinto L. J., Moore M. M.. 2005; The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding l-ornithine N5-oxygenase, is required for virulence. Infect Immun73:5493–5503
    [Google Scholar]
  11. Isaka M., Jaturaput A., Kladwang W., Punya J., Lertwerawat Y., Tanticharoen M., Thebtaranonth Y.. 2000; Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC1067. Planta Med66:473–475
    [Google Scholar]
  12. Isaka M., Palasarn S., Sriklung K., Kocharin K.. 2005; Cyclohexadepsipeptide from the insect pathogenic fungus Hirsutella nivea BCC 2594. J Nat Prod68:1680–1682
    [Google Scholar]
  13. Ito K., Tanaka T., Hatta R., Yamamoto M., Akimitsu K., Tsuge T.. 2004; Dissection of the host range of the fungal plant pathogen Alternaria alternate by modification of secondary metabolism. Mol Microbiol52:399–411
    [Google Scholar]
  14. Keller U., Schauwecker F.. 2003; Combinatorial biosynthesis of non-ribosomal peptides. Comb Chem High Throughput Screen6:527–540
    [Google Scholar]
  15. Konz D., Marahiel M. A.. 1999; How do peptide synthetases generate structural diversity?. Chem Biol6:R39–R48
    [Google Scholar]
  16. Lee C., Gorisch H., Kleinkauf H., Zocher R.. 1992; Highly specific d-hydroxyisovalerate dehydrogenase from the enniatin producer Fusarium sambucinum. J Biol Chem267:11741–11744
    [Google Scholar]
  17. Lee B. N., Kroken S., Chou D. Y., Robbertse B., Yoder O. C., Turgeon B. G.. 2005; Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryot Cell4:545–555
    [Google Scholar]
  18. Magarvey N. A., Ehling-Schulz M., Walsh C. T.. 2006; Characterization of the cereulide NRPS α-hydroxy acid specifying modules: activation of α-keto acids and chiral reduction on the assembly line. J Am Chem Soc128:10698–10699
    [Google Scholar]
  19. Marahiel M. A., Stachelhaus T., Mootz H. D.. 1997; Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev97:2651–2673
    [Google Scholar]
  20. McGaw L. J., Jäger A. K., van Staden J.. 2000; Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. J Ethnopharmacol72:247–263
    [Google Scholar]
  21. Mootz H. D., Schwarzer D., Marahiel M. A.. 2002; Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem3:490–504
    [Google Scholar]
  22. Oide S., Moeder W., Krasnoff S., Gibson D., Haas H., Yoshioka K., Turgeon B. G.. 2006; NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell18:2836–2853
    [Google Scholar]
  23. Paungmoung P., Punya J., Pongpattanakitshote S., Jeamton W., Vichisoonthonkul T., Bhumiratana S., Tanticharoen M., Linne U., Marahiel M. U., Cheevadhanarak S.. 2007; Detection of nonribosomal peptide synthetase genes in Xylaria sp. BCC1067 and cloning of XyNRPSA. FEMS Microbiol Lett274:260–268
    [Google Scholar]
  24. Pitkin J. W., Panaccione D. G., Walton J. D.. 1996; A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology142:1557–1565
    [Google Scholar]
  25. Raeder U., Broda P.. 1985; Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol1:17–20
    [Google Scholar]
  26. Sarabia F., Chammaa S., Ruiz A. S., Ortiz L. M., Herrera F. J. L.. 2004; Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem11:1309–1332
    [Google Scholar]
  27. Scherkenbeck J., Jeschke P., Harder A.. 2002; PF1022A and related cyclodepsipeptides – a novel class of anthelmintics. Curr Top Med Chem2:759–777
    [Google Scholar]
  28. Shimizu S., Kataok M., Chungs C. M., Yamada H.. 1988; Ketopantoic acid reductase of Pseudomonas maltophilia 845. J Biol Chem263:12077–12084
    [Google Scholar]
  29. Stachelhaus T., Mootz H. D., Marahiel M. A.. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol6:493–505
    [Google Scholar]
  30. Stack D., Neville C., Doyle S.. 2007; Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology153:1297–1306
    [Google Scholar]
  31. Suzuki A., Kanaoka M., Isogai A., Murakoshi S., Ichinoe M., Tamura S.. 1977; Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett25:2167–2170
    [Google Scholar]
  32. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W.. 1983; Transformation by integration in Aspergillus nidulans. Gene26:205–221
    [Google Scholar]
  33. Tobiasen C., Aahman J., Ravnholt K. S., Bjerrum M. J., Grell M. N., Giese H.. 2007; Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet51:43–58
    [Google Scholar]
  34. Turgay K., Marahiel M. A.. 1994; A general approach for identifying and cloning peptide synthetase genes. Pept Res7:238–241
    [Google Scholar]
  35. von Döhren H., Grafe U.. 1997; General aspects of secondary metabolism. In Biotechnology, vol. 7, Products of Secondary Metabolism pp1–322 Edited by Rehm H.-J., Reed G. Weinheim: Wiley-VCH;
    [Google Scholar]
  36. von Döhren H., Keller U., Vater J., Zocher R.. 1997; Multifunctional peptide synthetases. Chem Rev97:2675–2705
    [Google Scholar]
  37. Weber G., Schorgendorfer K., Schneider-Scherzer E., Leitner E.. 1994; The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet26:120–125
    [Google Scholar]
  38. Weckwerth W., Miyamoto K., Iinuma K., Krause M., Glinski M., Storm T., Bonse G., Kleinkauf H., Zocher R.. 2000; Biosynthesis of PF1022A and related cyclooctadepsipeptides. J Biol Chem275:17909–17915
    [Google Scholar]
  39. Woodcock D.M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Weidner M. N., Smith S. S., Michael M. Z., Graham M. W.. 1989; Quantitative evaluation of Escherichia coli host strain for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res17:3469–3478
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013995-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013995-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error