1887

Abstract

O157:H7 tightly associates with host cells through the formation of a pedestal structure in which cell cytoskeleton rearrangement has been observed. These pathogenic properties have been attributed to an island, known as the locus of enterocyte effacement (LEE), located on the bacterial chromosome. Gene is one of the LEE genes that has been less well characterized. To understand further the function of the gene, an -deleted mutant was created. The mutant lost type III protein secretion (TTS) capacity. In terms of intracellular components, there was a substantial decrease in the level of EspA, but no apparent effect on Tir and EspB was observed. Fractionation of the bacterial proteins indicated that L0017 was part of the inner-membrane fraction. This association with the membrane is consistent with the hypothesis that L0017 may act as one of the TTS components. In addition, L0017 was found to affect regulation of EspA at a post-transcriptional level. The presence of L0017 readily stabilized EspA and the interaction between L0017 and EspA was demonstrated by their co-purification as well as by a bacterial two-hybrid system. Therefore, L0017 is a chaperone, the second chaperone identified in this system after CesAB, and escorts EspA, a protein with a great tendency to polymerize.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013946-0
2008-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1094.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013946-0&mimeType=html&fmt=ahah

References

  1. Chiu, H. J. & Syu, W. J. ( 2005; ). Functional analysis of EspB from enterohaemorrhagic Escherichia coli. Microbiology 151, 3277–3286.[CrossRef]
    [Google Scholar]
  2. Chiu, H. J., Lin, W. S. & Syu, W. J. ( 2003; ). Type III secretion of EspB in enterohemorrhagic Escherichia coli O157:H7. Arch Microbiol 180, 218–226.[CrossRef]
    [Google Scholar]
  3. Crane, J. K., McNamara, B. P. & Donnenberg, M. S. ( 2001; ). Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol 3, 197–211.[CrossRef]
    [Google Scholar]
  4. Creasey, E. A., Delahay, R. M., Bishop, A. A., Shaw, R. K., Kenny, B., Knutton, S. & Frankel, G. ( 2003a; ). CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map. Mol Microbiol 47, 209–221.
    [Google Scholar]
  5. Creasey, E. A., Delahay, R. M., Daniell, S. J. & Frankel, G. ( 2003b; ). Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149, 2093–2106.[CrossRef]
    [Google Scholar]
  6. Creasey, E. A., Friedberg, D., Shaw, R. K., Umanski, T., Knutton, S., Rosenshine, I. & Frankel, G. ( 2003c; ). CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149, 3639–3647.[CrossRef]
    [Google Scholar]
  7. Daniell, S. J., Delahay, R. M., Shaw, R. K., Hartland, E. L., Pallen, M. J., Booy, F., Ebel, F., Knutton, S. & Frankel, G. ( 2001; ). The coiled coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis. Infect Immun 69, 4055–4064.[CrossRef]
    [Google Scholar]
  8. Day, J. B., Guller, I. & Plano, G. V. ( 2000; ). Yersinia pestis YscG protein is a Syc-like chaperone that directly binds YscE. Infect Immun 68, 6466–6471.[CrossRef]
    [Google Scholar]
  9. Delahay, R. M., Knutton, S., Shaw, R. K., Hartland, E. L., Pallen, M. J. & Frankel, G. ( 1999; ). The coiled-coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J Biol Chem 274, 35969–35974.[CrossRef]
    [Google Scholar]
  10. Deng, W., Li, Y., Vallance, B. A. & Finlay, B. B. ( 2001; ). Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect Immun 69, 6323–6335.[CrossRef]
    [Google Scholar]
  11. Deng, W., Puente, J. L., Gruenheid, S., Li, Y., Vallance, B. A., Vázquez, A., Barba, J., Ibarra, J. A., O'Donnell, P. & other authors ( 2004; ). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101, 3597–3602.[CrossRef]
    [Google Scholar]
  12. Deng, W., Li, Y., Hardwidge, P. R., Frey, E. A., Pfuetzner, R. A., Lee, S., Gruenheid, S., Strynakda, N. C., Puente, J. L. & Finlay, B. B. ( 2005; ). Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73, 2135–2146.[CrossRef]
    [Google Scholar]
  13. Donnenberg, M. S., Yu, J. & Kaper, J. B. ( 1993; ). A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J Bacteriol 175, 4670–4680.
    [Google Scholar]
  14. Ebel, F., Podzadel, T., Rohde, M., Kresse, A. U., Kramer, S., Deibel, C., Guzman, C. A. & Chakraborty, T. ( 1998; ). Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol Microbiol 30, 147–161.[CrossRef]
    [Google Scholar]
  15. Elliott, S. J., Krejany, E. O., Mellies, J. L., Robins-Browne, R. M., Sasakawa, C. & Kaper, J. B. ( 2001; ). EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect Immun 69, 4027–4033.[CrossRef]
    [Google Scholar]
  16. Elliott, S. J., O'Connell, C. B., Koutsouris, A., Brinkley, C., Donnenberg, M. S., Hecht, G. & Kaper, J. B. ( 2002; ). A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF. Infect Immun 70, 2271–2277.[CrossRef]
    [Google Scholar]
  17. Frankel, G., Phillips, A. D., Rosenshine, I., Dougan, G., Kaper, J. B. & Knutton, S. ( 1998; ). Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30, 911–921.[CrossRef]
    [Google Scholar]
  18. Hsu, S. C., Yan, B. S., Pan, J. M. & Syu, W. J. ( 1997; ). A monoclonal antibody reacts with maltose-binding protein of Escherichia coli and related enteric bacteria. J Immunol Methods 204, 169–174.[CrossRef]
    [Google Scholar]
  19. Jerse, A. E. & Kaper, J. B. ( 1991; ). The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infect Immun 59, 4302–4309.
    [Google Scholar]
  20. Kenny, B., Lai, L. C., Finlay, B. B. & Donnenberg, M. S. ( 1996; ). EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol 20, 313–323.[CrossRef]
    [Google Scholar]
  21. Kenny, B., Abe, A., Stein, M. & Finlay, B. B. ( 1997a; ). Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect Immun 65, 2606–2612.
    [Google Scholar]
  22. Kenny, B., DeVinney, R., Stein, M., Reinscheid, D. J., Frey, E. A. & Finlay, B. B. ( 1997b; ). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.[CrossRef]
    [Google Scholar]
  23. Kresse, A. U., Rohde, M. & Guzman, C. A. ( 1999; ). The EspD protein of enterohemorrhagic Escherichia coli is required for the formation of bacterial surface appendages and is incorporated in the cytoplasmic membranes of target cells. Infect Immun 67, 4834–4842.
    [Google Scholar]
  24. Lai, L. C., Wainwright, L. A., Stone, K. D. & Donnenberg, M. S. ( 1997; ). A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Infect Immun 65, 2211–2217.
    [Google Scholar]
  25. Lee, A. T. & Cerami, A. ( 1987; ). Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo. Proc Natl Acad Sci U S A 84, 8311–8314.[CrossRef]
    [Google Scholar]
  26. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  27. Masui, Y., Coleman, J. & Inouye, M. ( 1983; ). Experimental Manipulation of Gene Expression, pp. 15–32. Edited by M. Inouye. New York: Academic Press.
  28. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. ( 1995; ). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92, 1664–1668.[CrossRef]
    [Google Scholar]
  29. Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. & Kaper, J. B. ( 1999; ). The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33, 296–306.[CrossRef]
    [Google Scholar]
  30. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Mundy, R., Petrovska, L., Smollett, K., Simpson, N., Wilson, R. K., Yu, J., Tu, X., Rosenshine, I., Clare, S. & other authors ( 2004; ). Identification of a novel Citrobacter rodentium type III secreted protein, EspI and roles of this and other secreted proteins in infection. Infect Immun 72, 2288–2302.[CrossRef]
    [Google Scholar]
  32. Nataro, J. P. & Kaper, J. B. ( 1998; ). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.
    [Google Scholar]
  33. Neves, B. C., Mundy, R., Petrovska, L., Dougan, G., Knutton, S. & Frankel, G. ( 2003; ). CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71, 2130–2141.[CrossRef]
    [Google Scholar]
  34. O'Connell, C. B., Creasey, E. A., Knutton, S., Elliott, S., Crowther, L. J., Luo, W., Albert, M. J., Kaper, J. B., Frankel, G. & Donnenberg, M. S. ( 2004; ). SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD. Mol Microbiol 52, 1613–1625.[CrossRef]
    [Google Scholar]
  35. Pallen, M. J., Beatson, S. A. & Bailey, C. M. ( 2005; ). Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5, 9 [CrossRef]
    [Google Scholar]
  36. Quinaud, M., Chabert, J., Faudry, E., Neumann, E., Lemaire, D., Pastor, A., Elsen, S., Dessen, A. & Attree, I. ( 2005; ). The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J Biol Chem 280, 36293–36300.[CrossRef]
    [Google Scholar]
  37. Roe, A. J., Hoey, D. E. & Gally, D. L. ( 2003; ). Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli O157. Biochem Soc Trans 31, 98–103.
    [Google Scholar]
  38. Tsai, N. P., Wu, Y. C., Chen, J. W., Wu, C. F., Tzeng, C. M. & Syu, W. J. ( 2006; ). Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157:H7. Biochem J 393, 591–599.[CrossRef]
    [Google Scholar]
  39. Wainwright, L. A. & Kaper, J. B. ( 1998; ). EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol Microbiol 27, 1247–1260.[CrossRef]
    [Google Scholar]
  40. Yip, C. K., Finlay, B. B. & Strynadka, N. C. ( 2005; ). Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol 12, 75–81.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013946-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013946-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error