1887

Abstract

Biofilm formation in is usually associated with the production of the poly--acetylglucosamine (PNAG) exopolysaccharide, synthesized by proteins encoded by the operon. PNAG is a linear -(1-6)-linked -acetylglucosaminoglycan that has to be partially deacetylated and consequently positively charged in order to be associated with bacterial cell surfaces. Here, we investigated whether attachment of PNAG to bacterial surfaces is mediated by ionic interactions with the negative charge of wall teichoic acids (WTAs), which represent the most abundant polyanions of the Gram-positive bacterial envelope. We generated WTA-deficient mutants by in-frame deletion of the gene in two genetically unrelated strains. The Δ mutants were more sensitive to high temperatures, showed a higher degree of cell aggregation, had reduced initial adherence to abiotic surfaces and had a reduced capacity to form biofilms under both steady-state and flow conditions. However, the levels as well as the strength of the PNAG interaction with the bacterial cell surface were similar between Δ mutants and their corresponding wild-type strains. Furthermore, double Δ Δ mutants displayed a similar aggregative phenotype to that of single Δ mutants, indicating that PNAG is not responsible for the aggregative behaviour observed in Δ mutants. Overall, the absence of WTAs in had little effect on PNAG production or anchoring to the cell surface, but did affect the biofilm-forming capacity, cell aggregative behaviour and the temperature sensitivity/stability of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013292-0
2008-03-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/865.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013292-0&mimeType=html&fmt=ahah

References

  1. Aly R., Shinefield H. R., Litz C., Maibach H. I.. 1980; Role of teichoic acid in the binding of Staphylococcus aureus to nasal epithelial cells. J Infect Dis141:463–465
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. 2004; A new vector for efficient allelic replacement in naturally non transformable low GC% Gram-positive bacteria. Appl Environ Microbiol70:6887–6891
    [Google Scholar]
  3. Augustin J., Rosenstein R., Wieland B., Schneider U., Schnell N., Engelke G., Entian K. D., Gotz F.. 1992; Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis . Eur J Biochem204:1149–1154
    [Google Scholar]
  4. Baddiley J.. 2000; Teichoic acids in bacterial coaggregation. Microbiology146:1257–1258
    [Google Scholar]
  5. Baddiley J., Buchanan J. G., Hardy F. E., Martin R. O., Rajbhandary U. L., Sanderson A. R.. 1961; The structure of the ribitol teichoic acid of Staphylococcus aureus H. Biochim Biophys Acta52:406–407
    [Google Scholar]
  6. Bera A., Biswas R., Herbert S., Kulauzovic E., Weidenmaier C., Peschel A., Gotz F.. 2007; Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus . J Bacteriol189:280–283
    [Google Scholar]
  7. Cerca N., Jefferson K. K., Maira-Litrán T., Pier D. B., Kelly-Quintos C., Goldmann D. A., Azeredo J., Pier G. B.. 2007; Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly- N -acetyl- β -(1-6)-glucosamine. Infect Immun75:3406–3413
    [Google Scholar]
  8. Cobb B. A., Kasper D. L.. 2005; Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cell Microbiol7:1398–1403
    [Google Scholar]
  9. Cobb B. A., Wang Q., Tzianabos A. O., Kasper D. L.. 2004; Polysaccharide processing and presentation by the MHCII pathway. Cell117:677–687
    [Google Scholar]
  10. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Gotz F.. 1999; The intercellular adhesion ( ica ) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun67:5427–5433
    [Google Scholar]
  11. Cucarella C., Solano C., Valle J., Amorena B., Lasa I. I., Penades J. R.. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol183:2888–2896
    [Google Scholar]
  12. D'Elia M. A., Millar K. E., Beveridge T. J., Brown E. D.. 2006a; Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis . J Bacteriol188:8313–8316
    [Google Scholar]
  13. D'Elia M. A., Pereira M. P., Chung Y. S., Zhao W., Chau A., Kenney T. J., Sulavik M. C., Black T. A., Brown E. D.. 2006b; Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol188:4183–4189
    [Google Scholar]
  14. Doyle R. J., Chatterjee A. N., Streips U. N., Young F. E.. 1975; Soluble macromolecular complexes involving bacterial teichoic acids. J Bacteriol124:341–347
    [Google Scholar]
  15. Endl J., Seidl H. P., Fiedler F., Schleifer K. H.. 1983; Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol135:215–223
    [Google Scholar]
  16. Fischer W.. 1994; Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus . Med Microbiol Immunol183:61–76
    [Google Scholar]
  17. Gotz F.. 2002; Staphylococcus and biofilms. Mol Microbiol43:1367–1378
    [Google Scholar]
  18. Gross M., Cramton S. E., Gotz F., Peschel A.. 2001; Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun69:3423–3426
    [Google Scholar]
  19. Grundling A., Schneewind O.. 2007; Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus . Proc Natl Acad Sci U S A104:8478–8483
    [Google Scholar]
  20. Heilmann C., Gerke C., Perdreau-Remington F., Gotz F.. 1996a; Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun64:277–282
    [Google Scholar]
  21. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Gotz F.. 1996b; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol20:1083–1091
    [Google Scholar]
  22. Herbert S., Bera A., Nerz C., Kraus D., Peschel A., Goerke C., Meehl M., Cheung A., Gotz F.. 2007; Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathogens3:e102
    [Google Scholar]
  23. Ingavale S. S., Van Wamel W., Cheung A. L.. 2003; Characterization of RAT, an autolysis regulator in Staphylococcus aureus . Mol Microbiol48:1451–1466
    [Google Scholar]
  24. Jefferson K. K., Cramton S. E., Gotz F., Pier G. B.. 2003; Identification of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of IcaR. Mol Microbiol48:889–899
    [Google Scholar]
  25. Joyce J. G., Abeygunawardana C., Xu Q., Cook J. C., Hepler R., Przysiecki C. T., Grimm K. M., Roper K., Ip C. C.. other authors 2003; Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus . Carbohydr Res338:903–922
    [Google Scholar]
  26. Kaplan J. B., Ragunath C., Velliyagounder K., Fine D. H., Ramasubbu N.. 2004a; Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother48:2633–2636
    [Google Scholar]
  27. Kaplan J. B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J. K., Ramasubbu N.. 2004b; Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol186:8213–8220
    [Google Scholar]
  28. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β -1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol178:175–183
    [Google Scholar]
  29. Mack D., Becker P., Chatterjee I., Dobinsky S., Knobloch J. K., Peters G., Rohde H., Herrmann M.. 2004; Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus : functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol294:203–212
    [Google Scholar]
  30. Maira-Litrán T., Kropec A., Abeygunawardana C., Joyce J., Mark G. III, Goldmann D. A., Pier G. B.. 2002; Immunochemical properties of the staphylococcal poly- N -acetylglucosamine surface polysaccharide. Infect Immun70:4433–4440
    [Google Scholar]
  31. Maira-Litrán T., Kropec A., Goldmann D. A., Pier G. B.. 2005; Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly- N -acetyl- β -(1-6)-glucosamine. Infect Immun73:6752–6762
    [Google Scholar]
  32. Maki H., Yamaguchi T., Murakami K.. 1994; Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus . J Bacteriol176:4993–5000
    [Google Scholar]
  33. McKenney D., Hubner J., Muller E., Wang Y., Goldmann D. A., Pier G. B.. 1998; The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun66:4711–4720
    [Google Scholar]
  34. Mckenney D., Pouliot K., Wang V., Murthy V., Ulrich M., Döring G., Lee J. C., Goldmann D. A., Pier G. B.. 1999; Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science284:1523–1527
    [Google Scholar]
  35. Neuhaus F. C., Baddiley J.. 2003; A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev67:686–723
    [Google Scholar]
  36. Novick R. P.. 1990; The Staphylococcus as a molecular genetic system. In Molecular Biology of the Staphylococcus pp1–40 Edited by Novick R. P. New York: VCH Publishers;
    [Google Scholar]
  37. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Gotz F.. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem274:8405–8410
    [Google Scholar]
  38. Prigent-Combaret C., Prensier G., Le Thi T. T., Vidal O., Lejeune P., Dorel C.. 2000; Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol2:450–464
    [Google Scholar]
  39. Rice K. C., Mann E. E., Endres J. L., Weiss E. C., Cassat J. E., Smeltzer M. S., Bayles K. W.. 2007; The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Natl Acad Sci U S A104:8113–8118
    [Google Scholar]
  40. Soldo B., Lazarevic V., Karamata D.. 2002a; tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology148:2079–2087
    [Google Scholar]
  41. Soldo B., Lazarevic V., Pooley H. M., Karamata D.. 2002b; Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA ( yvyH ) encodes the UDP- N -acetylglucosamine 2-epimerase. J Bacteriol184:4316–4320
    [Google Scholar]
  42. Toledo-Arana A., Merino N., Vergara-Irigaray M., Debarbouille M., Penades J. R., Lasa I.. 2005; Staphylococcus aureus develops an alternative, ica -independent biofilm in the absence of the arlRS two-component system. J Bacteriol187:5318–5329
    [Google Scholar]
  43. Valle J., Toledo-Arana A., Berasain C., Ghigo J. M., Amorena B., Penades J. R., Lasa I.. 2003; SarA and not σ B is essential for biofilm development by Staphylococcus aureus . Mol Microbiol48:1075–1087
    [Google Scholar]
  44. Vinogradov E., Sadovskaya I., Li J., Jabbouri S.. 2006; Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res341:738–743
    [Google Scholar]
  45. Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F. R., Otto M.. 2004; A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem279:54881–54886
    [Google Scholar]
  46. Wang X., Preston J. F. III, Romeo T.. 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol186:2724–2734
    [Google Scholar]
  47. Ward J. B.. 1981; Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev45:211–243
    [Google Scholar]
  48. Weidenmaier C., Kokai-Kun J. F., Kristian S. A., Chanturiya T., Kalbacher H., Gross M., Nicholson G., Neumeister B., Mond J. J., Peschel A.. 2004; Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med10:243–245
    [Google Scholar]
  49. Weidenmaier C., Peschel A., Xiong Y. Q., Kristian S. A., Dietz K., Yeaman M. R., Bayer A. S.. 2005; Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis191:1771–1777
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013292-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013292-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error