1887

Abstract

Sulphur and nitrogen catabolic repressions are regulations that have long been recognized in fungi, but whose molecular bases remain largely elusive. This paper shows that catabolic repression of a protease-encoding gene correlates with the modulation of a phosphatidylethanolamine (PE)-specific phospholipase D (PLD) activity in the pathogenic fungus . Our results first demonstrate that the gene is subject to sulphur catabolic repression, with sulphate and cysteine inhibiting its expression. Sulphate and cysteine also cause a decrease of the total cellular PLD activity and, reciprocally, the two PLD inhibitors AEBSF [4-(2-aminoethyl)benzenesulphonyl fluoride] and curcumin negatively affect expression . Cysteine moreover inhibits the PE-specific PLD activity in cell extracts. is regulated by nitrogen, but here we show that this regulation does not rely on the proximal AREA binding site in its promoter, and that glutamine does not play a particular role in the process. A decrease in the total cellular PLD activity is also observed when the cells are fed ammonia, but this effect is smaller than that produced by sulphur. RNA-interference experiments finally suggest that the enzyme responsible for the PE-specific PLD activity is encoded by a gene that does not belong to the known HKD gene family of PLDs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012005-0
2008-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1464.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012005-0&mimeType=html&fmt=ahah

References

  1. Andrews, B., Bond, K., Lehman, J. A., Horn, J. M., Dugan, A. & Gomez-Cambronero, J. ( 2000; ). Direct inhibition of in vitro PLD activity by 4-(2-aminoethyl)-benzenesulfonyl fluoride. Biochem Biophys Res Commun 273, 302–311.[CrossRef]
    [Google Scholar]
  2. Andrianopoulos, A., Kourambas, S., Sharp, J. A., Davis, M. A. & Hynes, M. J. ( 1998; ). Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol 180, 1973–1977.
    [Google Scholar]
  3. Billon-Grand, G., Poussereau, N. & Fèvre, M. ( 2002; ). The extracellular proteases secreted in vitro and in planta by the phytopathogenic fungus Sclerotinia sclerotiorum. J Phytopathol 150, 507–511.[CrossRef]
    [Google Scholar]
  4. Chiang, T. Y. & Marzluf, G. A. ( 1994; ). DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing, and orientation of GATA core elements and their flanking sequences upon NIT2 binding. Biochemistry 33, 576–582.[CrossRef]
    [Google Scholar]
  5. Chiang, T. Y., Rai, R., Cooper, T. G. & Marzluf, G. A. ( 1994; ). DNA binding site specificity of the Neurospora global nitrogen regulatory protein NIT2: analysis with mutated binding sites. Mol Gen Genet 245, 512–516.[CrossRef]
    [Google Scholar]
  6. Cohen, B. L., Morris, J. E. & Drucker, H. ( 1975; ). Regulation of two extracellular proteases of Neurospora crassa by induction and by carbon-nitrogen and sulfur-metabolite repression. Arch Biochem Biophys 169, 324–330.[CrossRef]
    [Google Scholar]
  7. Eckert-Boulet, N., Stein Nielsen, P., Friis, C., Moreira dos Santos, M., Nielsen, J., Kielland-Brandt, M. C. & Regenberg, B. ( 2004; ). Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p. Yeast 21, 635–648.[CrossRef]
    [Google Scholar]
  8. Ellenberger, T. E., Brandl, C. J., Struhl, K. & Harrison, S. C. ( 1992; ). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices. Cell 71, 1223–1237.[CrossRef]
    [Google Scholar]
  9. Facklam, T. J. & Marzluf, G. A. ( 1978; ). Nitrogen regulation of amino acid catabolism in Neurospora crassa. Biochem Genet 16, 343–350.[CrossRef]
    [Google Scholar]
  10. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. ( 2001; ). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945.[CrossRef]
    [Google Scholar]
  11. Farley, P. C. & Ikasari, L. ( 1992; ). Regulation of the secretion of Rhizopus oligosporus extracellular carboxyl proteinase. J Gen Microbiol 138, 2539–2544.[CrossRef]
    [Google Scholar]
  12. Froeliger, E. H. & Carpenter, B. E. ( 1996; ). NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 251, 647–656.
    [Google Scholar]
  13. Fu, Y.-H. & Marzluf, G. A. ( 1990a; ). cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. J Biol Chem 265, 11942–11947.
    [Google Scholar]
  14. Fu, Y.-H. & Marzluf, G. A. ( 1990b; ). nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 10, 1056–1065.
    [Google Scholar]
  15. Fu, Y.-H. & Marzluf, G. A. ( 1990c; ). Site-directed mutagenesis of the ‘zinc finger’ DNA-binding domain of the nitrogen-regulatory protein NIT2 of Neurospora. Mol Microbiol 11, 1847–1852.
    [Google Scholar]
  16. Fu, Y. H., Young, J. L. & Marzluf, G. A. ( 1988; ). Molecular cloning and characterization of a negative-acting nitrogen regulatory gene of Neurospora crassa. Mol Gen Genet 214, 74–79.[CrossRef]
    [Google Scholar]
  17. Fu, Y.-H., Paietta, J. V., Mannix, D. G. & Marzluf, G. A. ( 1989; ). cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol 9, 1120–1127.
    [Google Scholar]
  18. Gagiano, M., Bauer, F. F. & Pretorius, I. S. ( 2002; ). The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2, 433–470.
    [Google Scholar]
  19. Girard, V., Fèvre, M. & Bruel, C. ( 2004; ). Involvement of cyclic AMP in the production of the acid protease Acp1 by Sclerotinia sclerotiorum. FEMS Microbiol Lett 237, 227–233.
    [Google Scholar]
  20. Haas, H., Bauer, B., Redl, B., Stoffler, G. & Marzluf, G. A. ( 1995; ). Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 27, 150–158.[CrossRef]
    [Google Scholar]
  21. Hairfield, M. L., Ayers, A. B. & Dolan, J. W. ( 2001; ). Phospholipase D1 is required for efficient mating projection formation in Saccharomyces cerevisiae. FEMS Yeast Res 1, 225–232.
    [Google Scholar]
  22. Hanson, M. A. & Marzluf, G. A. ( 1975; ). Control of the synthesis of a single enzyme by multiple regulatory circuits in Neurospora crassa. Proc Natl Acad Sci U S A 72, 1240–1244.[CrossRef]
    [Google Scholar]
  23. Hong, S., Horiuchi, H. & Ohta, A. ( 2003; ). Molecular cloning of phospholipase D gene from Aspergillus nidulans and characterization of its deletion mutants. FEMS Microbiol Lett 224, 231–237.[CrossRef]
    [Google Scholar]
  24. Jacobson, E. S. & Metzenberg, R. L. ( 1977; ). Control of arylsulfatase in a serine auxotroph of Neurospora. J Bacteriol 130, 1397–1398.
    [Google Scholar]
  25. Kanaan, M. N., Fu, Y.-H. & Marzluf, G. A. ( 1992; ). The DNA-binding domain of the Cys-3 regulatory protein of Neurospora crassa is bipartite. Biochemistry 31, 3197–3203.[CrossRef]
    [Google Scholar]
  26. Katz, M. E., Ricea, R. N. & Cheetham, B. F. ( 1994; ). Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene 150, 287–292.[CrossRef]
    [Google Scholar]
  27. Li, Q. & Marzluf, G. A. ( 1996; ). Determination of the Neurospora crassa CYS3 sulfur regulatory protein consensus DNA-binding site: amino-acid substitutions in the CYS3 bZIP domain that alter DNA-binding specificity. Curr Genet 30, 298–304.[CrossRef]
    [Google Scholar]
  28. Margelis, S., D'Souza, C., Small, A. J., Hynes, M. J., Adams, T. H. & Davis, M. A. ( 2001; ). Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans. J Bacteriol 183, 5826–5833.[CrossRef]
    [Google Scholar]
  29. Martel, M.-B., Létoublon, R. & Fèvre, M. ( 1996; ). Purification of endopolygalacturonases from Sclerotinia sclerotiorum: multiplicity of the complex enzyme system. Curr Microbiol 33, 243–248.[CrossRef]
    [Google Scholar]
  30. Marzluf, G. A. ( 1997a; ). Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61, 17–32.
    [Google Scholar]
  31. Marzluf, G. A. ( 1997b; ). Molecular genetics of sulfur assimilation in filamentous fungi and yeasts. Annu Rev Microbiol 51, 73–96.[CrossRef]
    [Google Scholar]
  32. Marzluf, G. A. & Metzenberg, R. ( 1968; ). Positive control by the cys-3 locus in regulation of sulfur metabolism in Neurospora. J Mol Biol 33, 423–437.[CrossRef]
    [Google Scholar]
  33. McDermott, M., Wakelam, M. & Morris, A. ( 2004; ). Phospholipase D. Biochem Cell Biol 82, 225–253.[CrossRef]
    [Google Scholar]
  34. Merika, M. & Orkin, S. H. ( 1993; ). DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13, 3999–4010.
    [Google Scholar]
  35. Morozov, I. Y., Galbis-Martinez, M., Jones, M. G. & Caddick, M. X. ( 2001; ). Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol 42, 269–277.
    [Google Scholar]
  36. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M. & Kang, S. ( 2001; ). Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91, 173–180.[CrossRef]
    [Google Scholar]
  37. Natorff, R., Piotrowska, M. & Paszewski, A. ( 1998; ). The Aspergillus nidulans sulfur regulatory gene sconB encodes a protein with WD40 repeats and an F-box. Mol Gen Genet 257, 255–263.[CrossRef]
    [Google Scholar]
  38. Natorff, R., Balinska, M. & Paszewski, A. ( 1993; ). At least four regulatory genes control sulphur metabolite repression in Aspergillus nidulans. Mol Gen Genet 238, 185–192.
    [Google Scholar]
  39. Natorff, R., Sienko, M., Brzywczy, J. & Paszewski, A. ( 2003; ). The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol 49, 1081–1094.[CrossRef]
    [Google Scholar]
  40. Ogino, C., Negi, Y., Daiso, H., Kanemasu, M., Kondo, A., Kuroda, S., Tanizawa, K., Shimizu, N. & Fukuda, H. ( 2001; ). Identification of a novel membrane-bound phospholipase D from Streptoverticillium cinnamoneum, possessing only hydrolytic activity. Biochim Biophys Acta 1530, 23–31.[CrossRef]
    [Google Scholar]
  41. Ohkubo, I., Huang, K., Ochiai, Y., Takagaki, M. & Kani, K. ( 1994; ). Dipeptidyl peptidase IV from porcine seminal plasma: purification, characterization, and N-terminal amino acid sequence. J Biochem 116, 1182–1186.
    [Google Scholar]
  42. Paietta, J. V. ( 1992; ). Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa. Mol Cell Biol 12, 1568–1577.
    [Google Scholar]
  43. Poussereau, N., Creton, S., Billon-Grand, G., Rascle, C. & Fèvre, M. ( 2001; ). Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147, 717–726.
    [Google Scholar]
  44. Ravagnani, A., Gorfinkiel, L., Langdon, T., Diallinas, G., Adjadj, E., Demais, S., Gorton, D., Arst, H. N. & Scazzocchio, C. ( 1997; ). Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J 16, 3974–3986.[CrossRef]
    [Google Scholar]
  45. Rohde, J. R. & Cardenas, M. E. ( 2004; ). Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol 279, 53–72.
    [Google Scholar]
  46. Rolland, F., Winderickx, J. & Thevelein, J. M. ( 2002; ). Glucose-sensing and signalling mechanisms in yeast. FEMS Yeast Res 2, 183–201.[CrossRef]
    [Google Scholar]
  47. Rolland, S., Jobic, C., Fèvre, M. & Bruel, C. ( 2003; ). Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet 44, 164–171.[CrossRef]
    [Google Scholar]
  48. Rouillon, A., Barbey, R., Patton, E., Tyers, M. & Thomas, D. ( 2000; ). Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex. EMBO J 19, 282–294.[CrossRef]
    [Google Scholar]
  49. Scazzocchio, C. ( 2000; ). The fungal GATA factors. Curr Opin Microbiol 3, 126–131.[CrossRef]
    [Google Scholar]
  50. Screen, S., Bailey, A., Charnley, K., Cooper, R. & Clarkson, J. ( 1998; ). Isolation of a nitrogen response regulator gene (nrr1) from Metarhizium anisopliae. Gene 221, 17–24.[CrossRef]
    [Google Scholar]
  51. Sikora, L. & Marzluf, G. A. ( 1982a; ). Regulation of l-amino acid oxidase and d-amino acid oxidase in Neurospora crassa. Mol Gen Genet 186, 33–39.[CrossRef]
    [Google Scholar]
  52. Sikora, L. A. & Marzluf, G. A. ( 1982b; ). Regulation of l-phenylalanine ammonia-lyase by l-phenylalanine and nitrogen in Neurospora crassa. J Bacteriol 150, 1287–1291.
    [Google Scholar]
  53. Smith, D. G., Garcia-Pedrajas, M. D., Gold, S. E. & Perlin, M. H. ( 2003; ). Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol 50, 259–275.[CrossRef]
    [Google Scholar]
  54. Soanes, D. M., Skinner, W., Keon, J., Hargreaves, J. & Talbot, N. J. ( 2002; ). Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact 15, 421–427.[CrossRef]
    [Google Scholar]
  55. Tang, X., Waksman, M., Ely, Y. & Liscovitch, M. ( 2002; ). Characterization and regulation of yeast Ca2+-dependent phosphatidylethanolamine-phospholipase D activity. Eur J Biochem 269, 3821–3830.[CrossRef]
    [Google Scholar]
  56. Todd, R. B., Fraser, J. A., Wong, K. H., Davis, M. A. & Hynes, M. J. ( 2005; ). Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell 4, 1646–1653.[CrossRef]
    [Google Scholar]
  57. Waksman, M., Eli, Y., Liscovitch, M. & Gerst, J. E. ( 1996; ). Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem 271, 2361–2364.[CrossRef]
    [Google Scholar]
  58. Waksman, M., Tang, X., Eli, Y., Gerst, J. E. & Liscovitch, M. ( 1997; ). Identification of a novel Ca2+-dependent, phosphatidylethanolamine-hydrolyzing phospholipase D in yeast bearing a disruption in PLD1. J Biol Chem 272, 36–39.[CrossRef]
    [Google Scholar]
  59. Yamamoto, H., Hanada, K., Kawasaki, K. & Nishijima, M. ( 1997; ). Inhibitory effect of curcumin on mammalian phosholipase D activity. FEBS Lett 417, 196–198.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012005-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error