1887

Abstract

promotes transcription of a large cluster of genes involved in ribosome biogenesis. During growth in shake flasks, a mutant deleted for shows a small size phenotype and a reduced growth rate. We characterized the behaviour of an Δ mutant compared to an isogenic reference strain growing in chemostat cultures at the same specific growth rate. By studying glucose (anaerobic)- and ethanol (aerobic)-limited cultures we focused specifically on nutrient-dependent effects. Major differences in the genome-wide transcriptional profiles were observed during glucose-limited growth. In particular, Sfp1 appeared to be involved in the control of ribosome biogenesis but not of ribosomal protein gene expression. Flow cytometric analyses revealed size defects for the mutant under both growth conditions. Our results suggest that Sfp1 plays a role in transcriptional and cell size control, operating at two different levels of the regulatory network linking growth, metabolism and cell size.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011767-0
2008-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/337.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011767-0&mimeType=html&fmt=ahah

References

  1. Alberghina, L. & Porro, D. ( 1993; ). Quantitative flow cytometry: analysis of protein distributions in budding yeast. A mini-review. Yeast 9, 815–823.[CrossRef]
    [Google Scholar]
  2. Alberghina, L., Ranzi, B. M., Porro, D. & Martegani, E. ( 1991; ). Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast. Biotechnol Prog 7, 299–304.[CrossRef]
    [Google Scholar]
  3. Alberghina, L., Smeraldi, C., Ranzi, B. M. & Porro, D. ( 1998; ). Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. J Bacteriol 180, 3864–3872.
    [Google Scholar]
  4. Blumberg, H. & Silver, P. ( 1991; ). A split zinc-finger protein is required for normal yeast growth. Gene 107, 101–110.[CrossRef]
    [Google Scholar]
  5. Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. ( 2003; ). The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278, 3265–3274.[CrossRef]
    [Google Scholar]
  6. Brauer, M. J., Saldanha, A. J., Dolinski, K. & Botstein, D. ( 2005; ). Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16, 2503–2517.[CrossRef]
    [Google Scholar]
  7. Castrillo, J. I., Zeef, L. A., Hoyle, D. C., Zhang, N., Hayes, A., Gardner, D. C., Cornell, M. J., Petty, J., Hakes, L. & other authors ( 2007; ). Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 6, 4 [CrossRef]
    [Google Scholar]
  8. Cipollina, C., Alberghina, L., Porro, D. & Vai, M. ( 2005; ). SPF1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast 22, 385–399.[CrossRef]
    [Google Scholar]
  9. Cortassa, S., Aon, J. C. & Aon, M. A. ( 1995; ). Fluxes of carbon, phosphorylation and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources. Biotechnol Bioeng 47, 193–208.[CrossRef]
    [Google Scholar]
  10. Daran-Lapujade, P., Jansen, M. L., Daran, J. M., van Gulik, W., de Winde, J. H. & Pronk, J. T. ( 2004; ). Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279, 9125–9138.[CrossRef]
    [Google Scholar]
  11. Fingerman, I., Nagaraj, V., Norris, D. & Vershon, A. K. ( 2003; ). Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell 2, 1061–1068.[CrossRef]
    [Google Scholar]
  12. Flikweert, M. T., Kuyper, M., van Maris, A. J., Kotter, P., van Dijken, J. P. & Pronk, J. T. ( 1999; ). Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66, 42–50.[CrossRef]
    [Google Scholar]
  13. Futcher, B. ( 1996; ). Cyclins and the wiring of the yeast cell cycle. Yeast 12, 1635–1646.[CrossRef]
    [Google Scholar]
  14. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. & Weissman, J. S. ( 2003; ). Global analysis of protein expression in yeast. Nature 425, 737–741.[CrossRef]
    [Google Scholar]
  15. Grummt, I. ( 2003; ). Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17, 1691–1702.[CrossRef]
    [Google Scholar]
  16. Hoskisson, P. A. & Hobbs, G. ( 2005; ). Continuous culture – making a comeback? Microbiology 151, 3153–3159.[CrossRef]
    [Google Scholar]
  17. Hughes, J. D., Estep, P. W., Tavazoie, S. & Church, G. M. ( 2000; ). Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296, 1205–1214.[CrossRef]
    [Google Scholar]
  18. Jorgensen, P. & Tyers, M. ( 2004; ). How cells coordinate growth and division. Curr Biol 14, R1014–R1027.[CrossRef]
    [Google Scholar]
  19. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. ( 2002; ). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400.[CrossRef]
    [Google Scholar]
  20. Jorgensen, P., Rupes, I., Sharom, J. R., Schneper, L., Broach, J. R. & Tyers, M. ( 2004; ). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18, 2491–2505.[CrossRef]
    [Google Scholar]
  21. Kappeli, O. ( 1986; ). Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28, 181–209.
    [Google Scholar]
  22. Klein, C. & Struhl, K. ( 1994; ). Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14, 1920–1928.
    [Google Scholar]
  23. Li, F. N. & Johnston, M. ( 1997; ). Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J 16, 5629–5638.[CrossRef]
    [Google Scholar]
  24. Li, H., Tsang, C. K., Watkins, M., Bertram, P. G. & Zheng, X. F. ( 2006; ). Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 442, 1058–1061.[CrossRef]
    [Google Scholar]
  25. Marion, R. M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N. & O'Shea, E. K. ( 2004; ). Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101, 14315–14322.[CrossRef]
    [Google Scholar]
  26. Martin, D. E., Soulard, A. & Hall, M. N. ( 2004; ). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969–979.[CrossRef]
    [Google Scholar]
  27. Mendenhall, M. D. & Hodge, A. E. ( 1998; ). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1191–1243.
    [Google Scholar]
  28. Monod, J. ( 1950; ). La technique de culture continue, théorie et applications. Ann Inst Pasteur (Paris) 79, 390–410.
    [Google Scholar]
  29. Novick, A. & Szilard, L. ( 1950; ). Experiments with the chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A 36, 708–719.[CrossRef]
    [Google Scholar]
  30. Ozcan, S., Dover, J., Rosenwald, A. G., Wolfl, S. & Johnston, M. ( 1996; ). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A 93, 12428–12432.[CrossRef]
    [Google Scholar]
  31. Piper, M. D., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J. & Pronk, J. T. ( 2002; ). Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277, 37001–37008.[CrossRef]
    [Google Scholar]
  32. Planta, R. J. ( 1997; ). Regulation of ribosome synthesis in yeast. Yeast 13, 1505–1518.[CrossRef]
    [Google Scholar]
  33. Polymenis, M. & Schmidt, E. V. ( 1999; ). Coordination of cell growth with cell division. Curr Opin Genet Dev 9, 76–80.[CrossRef]
    [Google Scholar]
  34. Popolo, L., Vanoni, M. & Alberghina, L. ( 1982; ). Control of the yeast cell cycle by protein synthesis. Exp Cell Res 142, 69–78.[CrossRef]
    [Google Scholar]
  35. Porro, D., Martegani, E., Ranzi, B. M. & Alberghina, L. ( 1997; ). Identification of different daughter and parent subpopulations in an asynchronously growing Saccharomyces cerevisiae population. Res Microbiol 148, 205–215.[CrossRef]
    [Google Scholar]
  36. Porro, D., Brambilla, L. & Alberghina, L. ( 2003; ). Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae. FEMS Microbiol Lett 229, 165–171.[CrossRef]
    [Google Scholar]
  37. Postma, E., Kuiper, A., Tomasouw, W. F., Scheffers, W. A. & van Dijken, J. P. ( 1989; ). Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Appl Environ Microbiol 55, 3214–3220.
    [Google Scholar]
  38. Powers, T. & Walter, P. ( 1999; ). Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10, 987–1000.[CrossRef]
    [Google Scholar]
  39. Regenberg, B., Grotkjaer, T., Winther, O., Fausboll, A., Akesson, M., Bro, C., Hansen, L. K., Brunak, S. & Nielsen, J. ( 2006; ). Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7, R107 [CrossRef]
    [Google Scholar]
  40. Robinson, M. D., Grigull, J., Mohammad, N. & Hughes, T. R. ( 2002; ). FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3, 35 [CrossRef]
    [Google Scholar]
  41. Rohde, J. R. & Cardenas, M. E. ( 2003; ). The Tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 23, 629–635.[CrossRef]
    [Google Scholar]
  42. Rolland, F., de Winde, J. H., Lemaire, K., Boles, E., Thevelein, J. M. & Winderickx, J. ( 2000; ). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38, 348–358.[CrossRef]
    [Google Scholar]
  43. Rudra, D., Zhao, Y. & Warner, J. R. ( 2005; ). Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J 24, 533–542.[CrossRef]
    [Google Scholar]
  44. Saldanha, A. J., Brauer, M. J. & Botstein, D. ( 2004; ). Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15, 4089–4104.[CrossRef]
    [Google Scholar]
  45. Schmelzle, T. & Hall, M. N. ( 2000; ). TOR, a central controller of cell growth. Cell 103, 253–262.[CrossRef]
    [Google Scholar]
  46. Schneider, B. L., Zhang, J., Markwardt, J., Tokiwa, G., Volpe, T., Honey, S. & Futcher, B. ( 2004; ). Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 24, 10802–10813.[CrossRef]
    [Google Scholar]
  47. Sudbery, P. ( 2002; ). Cell biology. When wee meets whi. Science 297, 351–352.[CrossRef]
    [Google Scholar]
  48. Thevelein, J. M. & de Winde, J. H. ( 1999; ). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33, 904–918.[CrossRef]
    [Google Scholar]
  49. Tsang, C. K., Bertram, P. G., Ai, W., Drenan, R. & Zheng, X. F. ( 2003; ). Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 22, 6045–6056.[CrossRef]
    [Google Scholar]
  50. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  51. van Helden, J., Andre, B. & Collado-Vides, J. ( 2000; ). A web site for the computational analysis of yeast regulatory sequences. Yeast 16, 177–187.[CrossRef]
    [Google Scholar]
  52. van Maris, A. J., Luttik, M. A., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. ( 2003; ). Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69, 2094–2099.[CrossRef]
    [Google Scholar]
  53. Vanoni, M., Vai, M., Popolo, L. & Alberghina, L. ( 1983; ). Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. J Bacteriol 156, 1282–1291.
    [Google Scholar]
  54. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. ( 1992; ). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517.[CrossRef]
    [Google Scholar]
  55. Wade, C., Shea, K. A., Jensen, R. V. & McAlear, M. A. ( 2001; ). EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 21, 8638–8650.[CrossRef]
    [Google Scholar]
  56. Wang, Y., Pierce, M., Schneper, L., Guldal, C. G., Zhang, X., Tavazoie, S. & Broach, J. R. ( 2004; ). Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2, E128 [CrossRef]
    [Google Scholar]
  57. Warner, J. R. ( 1999; ). The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24, 437–440.[CrossRef]
    [Google Scholar]
  58. Wu, L., van Dam, J., Schipper, D., Kresnowati, M. T., Proell, A. M., Ras, C., van Winden, W. A., van Gulik, W. M. & Heijnen, J. J. ( 2006; ). Short-term metabolome dynamics and carbon, electron, and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK 113-7D following a glucose pulse. Appl Environ Microbiol 72, 3566–3577.[CrossRef]
    [Google Scholar]
  59. Zaragoza, D., Ghavidel, A., Heitman, J. & Schultz, M. C. ( 1998; ). Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18, 4463–4470.
    [Google Scholar]
  60. Zurita-Martinez, S. A. & Cardenas, M. E. ( 2005; ). Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell 4, 63–71.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011767-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011767-0
Loading

Data & Media loading...

Supplements

Genes showing significantly changed expression in the null mutant compared to the reference strain during ethanol (aerobic)-limited growth [ PDF] (81 kb) Genes showing significantly changed expression in the null mutant compared to the reference strain during glucose (anaerobic)-limited growth [ PDF] (95 kb) Expression levels of ribosomal protein genes [ PDF] (60 kb)

PDF

Genes showing significantly changed expression in the null mutant compared to the reference strain during ethanol (aerobic)-limited growth [ PDF] (81 kb) Genes showing significantly changed expression in the null mutant compared to the reference strain during glucose (anaerobic)-limited growth [ PDF] (95 kb) Expression levels of ribosomal protein genes [ PDF] (60 kb)

PDF

Genes showing significantly changed expression in the null mutant compared to the reference strain during ethanol (aerobic)-limited growth [ PDF] (81 kb) Genes showing significantly changed expression in the null mutant compared to the reference strain during glucose (anaerobic)-limited growth [ PDF] (95 kb) Expression levels of ribosomal protein genes [ PDF] (60 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error