1887

Abstract

The utilization of organosulfonates as carbon sources by aerobic or nitrate-reducing bacteria usually involves a measurable, uncharacterized sulfite dehydrogenase. This is tacitly assumed to be sulfite : ferricytochrome- oxidoreductase [EC 1.8.2.1], despite negligible interaction with (eukaryotic) cytochrome : the enzyme is assayed at high specific activity with ferricyanide as electron acceptor. Purified periplasmic sulfite dehydrogenases (SorAB, SoxCD) are known from chemoautotrophic growth and are termed ‘sulfite oxidases’ by bioinformatic services. The catalytic unit (SorA, SoxC; termed ‘sulfite oxidases’ cd02114 and cd02113, respectively) binds a molybdenum-cofactor (Moco), and involves a cytochrome (SorB, SoxD) as electron acceptor. The genomes of several bacteria that express a sulfite dehydrogenase during heterotrophic growth contain neither nor genes; others contain at least four paralogues, for example H16, which is known to express an inducible sulfite dehydrogenase during growth with taurine (2-aminoethanesulfonate). This soluble enzyme was enriched 320-fold in four steps. The 40 kDa protein (denatured) had an -terminal amino acid sequence which started at position 42 of the deduced sequence of H16_B0860 (termed ‘sulfite oxidase’ cd02114), which we named SorA. The neighbouring gene is an orthologue of , and the genes were co-transcribed. Cell fractionation showed SorA to be periplasmic. The corresponding enzyme in SPH-1 was enriched 270-fold, identified as Daci_0055 (termed ‘sulfite oxidase’ cd02110) and has a cytochrome encoded downstream. We presume, from genomic data for bacteria and archaea, that there are several subgroups of sulfite dehydrogenases, which all contain a Moco, and transfer electrons to a specific cytochrome .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011650-0
2008-01-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/256.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011650-0&mimeType=html&fmt=ahah

References

  1. Beller H. R., Chain P. S. G., Letain T. E., Chakicherla A., Larimer F. W., Richardson P. M., Coleman M. A., Wood A. P., Kelly D. P.. 2006; The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans . J Bacteriol188:1473–1488
    [Google Scholar]
  2. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  3. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  4. Chan L.-K., Morgan-Kiss R., Hanson T. E.. 2007; Sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum ): genetic and proteomic analyses. In Microbial Sulfur Metabolism pp117–126 Edited by Dahl C., Friedrich C. G.. Berlin: Springer Verlag;
    [Google Scholar]
  5. Cook A. M., Smits T. H. M., Denger K.. 2007; Sulfonates and organotrophic sulfite metabolism. In Microbial Sulfur Metabolism pp170–183 Edited by Dahl C., Friedrich C. G.. Berlin: Springer Verlag;
    [Google Scholar]
  6. Denger K., Ruff J., Rein U., Cook A. M.. 2001; Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes : purification, properties and primary sequence. Biochem J357:581–586
    [Google Scholar]
  7. Desomer J., Crespi M., Van Montagu M.. 1991; Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electro-transformation as an insertional mutagenesis system. Mol Microbiol5:2115–2124
    [Google Scholar]
  8. Doonan C. J., Kappler U., George G. N.. 2006; Structure of the active site of sulfite dehydrogenase from Starkeya novella . Inorg Chem45:7488–7492
    [Google Scholar]
  9. Francis R. T. Jr, Becker R. R.. 1984; Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem136:509–514
    [Google Scholar]
  10. Friedrich C. G., Quentmeier A., Bardischewsky F., Rother D., Orawski G., Hellwig P., Fischer J.. 2007; Redox control of chemotrophic sulfur oxidation of Paracoccus pantotrophus . In Microbial Sulfur Metabolism pp139–150 Edited by Dahl C.. Friedrich C. G.. Berlin: Springer Verlag;
    [Google Scholar]
  11. Fritz G., Schiffer A., Behrens A., Büchert T., Ermler U., Kroneck P. M. H.. 2007; Living on sulfate: three-dimensional structure and spectroscopy of adenosine 5′-phosphosulfate reductase and dissimilatory sulfite reductase. In Microbial Sulfur Metabolism pp13–23 Edited by Dahl C.. Friedrich C. G.. Berlin: Springer Verlag;
    [Google Scholar]
  12. Gorzynska A. K., Denger K., Cook A. M., Smits T. H. M.. 2006; Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T. Arch Microbiol185:402–406
    [Google Scholar]
  13. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J.. 1990; PCR Protocols. A Guide to Methods and Applications San Diego: Academic Press, Inc;
  14. Johnston J. B., Murray K., Cain R. B.. 1975; Microbial metabolism of aryl sulphonates. A reassessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie Van Leeuwenhoek41:493–511
    [Google Scholar]
  15. Junker F., Leisinger T., Cook A. M.. 1994; 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.–) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology140:1713–1722
    [Google Scholar]
  16. Kappler U.. 2007; Bacterial sulfite-oxidizing enzymes – enzymes for chemolithotrophs only?. In Microbial Sulfur Metabolism pp151–169 Edited by Dahl C.. Friedrich C. G. Berlin: Springer Verlag;
    [Google Scholar]
  17. Kappler U., Bennett B., Rethmeier J., Schwarz G., Deutzmann R., McEwan A. G., Dahl C.. 2000; Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus . Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem275:13202–13212
    [Google Scholar]
  18. Kelly D. P., Shergill J. K., Lu W. P., Wood A. P.. 1997; Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek71:95–107
    [Google Scholar]
  19. King J. E., Quinn J. P.. 1997; Metabolism of sulfoacetate by environmental Aureobacterium sp. and Comamonas acidovorans isolates. Microbiology143:3907–3912
    [Google Scholar]
  20. King J. E., Jaouhari R., Quinn J. P.. 1997; The role of sulfoacetaldehyde sulfo-lyase in the mineralization of isethionate by an environmental Acinetobacter isolate. Microbiology143:2339–2343
    [Google Scholar]
  21. Kondo H., Ishimoto M.. 1972; Enzymatic formation of sulfite and acetate from sulfoacetaldehyde, a degradation product of taurine. J Biochem ( Tokyo ) 72:487–489
    [Google Scholar]
  22. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  23. Laue H., Field J. A., Cook A. M.. 1996; Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ Sci Technol30:1129–1132
    [Google Scholar]
  24. le Maire M., Ghasi A., Moller J. V.. 1996; Gel chromatography as an analytical tool for characterization of size and molecular mass of proteins. ACS Symp Ser635:36–51
    [Google Scholar]
  25. Lu W.-P., Kelly D. P.. 1984; Properties and role of sulphite: cytochrome c oxidoreductase purified from Thiobacillus versutus (A2). J Gen Microbiol130:1683–1692
    [Google Scholar]
  26. Marchler-Bauer A., Anderson J. B., Derbyshire M. K., DeWeese-Scott C., Gonzalez N. R., Gwadz M., Hao L., He S., Hurwitz D. I.. other authors 2007; CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res35:D237–D240
    [Google Scholar]
  27. Mayer J., Denger K., Smits T. H. M., Hollemeyer K., Groth U., Cook A. M.. 2006; N -Acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol186:61–67
    [Google Scholar]
  28. Metzler D. E.. 2001; Biochemistry: the Chemical Reactions of Living Cells , 2nd edn. San Diego: Academic Press;
  29. Pohlmann A., Fricke W. F., Reinecke F., Kusian B., Liesegang H., Cramm R., Eitinger T., Ewering C., Pötter M.. other authors 2006; Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol24:1257–1262
    [Google Scholar]
  30. Reichenbecher W., Kelly D. P., Murrell J. C.. 1999; Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol172:387–392
    [Google Scholar]
  31. Ruff J., Denger K., Cook A. M.. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J369:275–285
    [Google Scholar]
  32. Schiffer A., Fritz G., Kroneck P. M. H., Ermler U.. 2006; Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5′-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry45:2960–2967
    [Google Scholar]
  33. Schleheck D., Knepper T. P., Fischer K., Cook A. M.. 2004; Mineralization of individual congeners of linear alkylbenzenesulfonate (LAS) by defined pairs of heterotrophic bacteria. Appl Environ Microbiol70:4053–4063
    [Google Scholar]
  34. Sörbo B.. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol143:3–6
    [Google Scholar]
  35. Thurnheer T., Köhler T., Cook A. M., Leisinger T.. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulfonation. J Gen Microbiol132:1215–1220
    [Google Scholar]
  36. Thysse G. J. E., Wanders T. H.. 1974; Initial steps in the degradation of n -alkane-1-sulphonates by Pseudomonas . Antonie Van Leeuwenhoek40:25–37
    [Google Scholar]
  37. Toghrol F., Southerland W. M.. 1983; Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum. J Biol Chem258:6762–6766
    [Google Scholar]
  38. Weinitschke S., Styp von Rekowski K., Denger K., Cook A. M.. 2005; Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen. Microbiology151:1285–1290
    [Google Scholar]
  39. Weinitschke S., Denger K., Cook A. M., Smits T. H. M.. 2007; The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology153:3055–3060
    [Google Scholar]
  40. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703
    [Google Scholar]
  41. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D.. 1976; An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli . Anal Biochem74:160–170
    [Google Scholar]
  42. Wodara C., Bardischewsky F., Friedrich C. G.. 1997; Cloning and characterization of sulfite dehydrogenase, two c -type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol179:5014–5023
    [Google Scholar]
  43. Yi H., Lim Y. W., Chun J.. 2007; Taxonomic evaluation of the genera Ruegeria and Silicibacter : a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol57:815–819
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011650-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011650-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error