1887

Abstract

The human opportunistic pathogen is the major cause of morbidity and mortality of cystic fibrosis patients and is responsible for a variety of infections in compromised hosts. Using PCR-based signature-tagged mutagenesis, we identified a STM5437 mutant with an insertion into the PA5437 gene (called for putative pyruvate carboxylase regulator). PycR inactivation results in 100 000-fold attenuation of virulence in the rat lung . PycR has the signature of a transcriptional regulator with a predicted helix–turn–helix motif binding to a typical LysR DNA binding site in the PA5436 ()–PA5437 () intercistronic region. Two pyruvate carboxylase subunits ( and ) are divergently transcribed upstream of . Transcriptional start sites of and are located at −127 and −88 bp upstream of their initiation codons with Shine–Dalgarno and putative promoter sequences containing −10 and −35 sequences. The DNA binding of PycR was confirmed by DNA mobility shift assay. Genome-wide transcriptional profiling and quantitative real-time PCR (qRT-PCR) indicated that the genes differentially regulated by PycR include two pyruvate carboxylase genes and genes necessary for lipid metabolism, lipolytic activity, anaerobic respiration and biofilm formation. PycR is a regulator with pleiotropic effects on virulence factors, such as lipase and esterase expression and biofilm formation, which are important for maintenance of in chronic lung infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011239-0
2008-07-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/2106.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011239-0&mimeType=html&fmt=ahah

References

  1. Arai H., Mizutani M., Igarashi Y.. 2003; Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa. Microbiology149:29–36
    [Google Scholar]
  2. Baek S. H., Rajashekara G., Splitter G. A., Shapleigh J. P.. 2004; Denitrification genes regulate Brucella virulence in mice. J Bacteriol186:6025–6031
    [Google Scholar]
  3. Bochner B. R., Gadzinski P., Panomitros E.. 2001; Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res11:1246–1255
    [Google Scholar]
  4. Bowtell D., Sambrook J.. 2003; DNA Microarrays: a Molecular Cloning Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  5. Branson J. P., Nezic M., Wallace J. C., Attwood P. V.. 2002; Kinetic characterization of yeast pyruvate carboxylase isozyme Pyc1. Biochemistry41:4459–4466
    [Google Scholar]
  6. Carty N. L., Rumbaugh K. P., Hamood A. N.. 2003; Regulation of toxA by PtxR in Pseudomonas aeruginosa PA103. Can J Microbiol49:450–464
    [Google Scholar]
  7. Cash H. A., Woods D. E., McCullough B., Johanson W. G. Jr, Bass J. A.. 1979; A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis119:453–459
    [Google Scholar]
  8. deHaseth P. L., Zupancic M. L., Record M. T. Jr. 1998; RNA polymerase–promoter interactions: the comings and goings of RNA polymerase. J Bacteriol180:3019–3025
    [Google Scholar]
  9. Delic-Attree I., Toussaint B., Garin J., Vignais P. M.. 1997; Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol Microbiol24:1275–1284
    [Google Scholar]
  10. Filiatrault M. J., Wagner V. E., Bushnell D., Haidaris C. G., Iglewski B. H., Passador L.. 2005; Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect Immun73:3764–3772
    [Google Scholar]
  11. Firoved A. M., Wood S. R., Ornatowski W., Deretic V., Timmins G. S.. 2004; Microarray analysis and functional characterization of the nitrosative stress response in nonmucoid and mucoid Pseudomonas aeruginosa. J Bacteriol186:4046–4050
    [Google Scholar]
  12. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. 1998; A broad-host-range Flp– FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86
    [Google Scholar]
  13. Holloway B. W., Krishnapillai V., Morgan A. F.. 1979; Chromosomal genetics of Pseudomonas. Microbiol Rev43:73–102
    [Google Scholar]
  14. Jaeger K. E., Dijkstra B. W., Reetz M. T.. 1999; Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol53:315–351
    [Google Scholar]
  15. Jitrapakdee S., Wallace J. C.. 1999; Structure, function and regulation of pyruvate carboxylase. Biochem J340:1–16
    [Google Scholar]
  16. Kolenbrander P. E., Andersen R. N.. 1989; Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas ( Bacteroides) gingivalis by lactose and related sugars. Infect Immun57:3204–3209
    [Google Scholar]
  17. Kovacikova G., Lin W., Skorupski K.. 2005; Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol57:420–433
    [Google Scholar]
  18. Lai H., Kraszewski J. L., Purwantini E., Mukhopadhyay B.. 2006; Identification of pyruvate carboxylase genes in Pseudomonas aeruginosa PAO1 and development of a P. aeruginosa-based overexpression system for α4- and α4 β4-type pyruvate carboxylases. Appl Environ Microbiol72:7785–7792
    [Google Scholar]
  19. Lehoux D. E., Sanschagrin F., Levesque R. C.. 2002; Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol Lett210:73–80
    [Google Scholar]
  20. Lehoux D. E., Sanschagrin F., Kukavica-Ibrulj I., Potvin E., Levesque R. C.. 2004; Identification of novel pathogenicity genes by PCR signature-tagged mutagenesis and related technologies. Methods Mol Biol266:289–304
    [Google Scholar]
  21. Lim F., Morris C. P., Occhiodoro F., Wallace J. C.. 1988; Sequence and domain structure of yeast pyruvate carboxylase. J Biol Chem263:11493–11497
    [Google Scholar]
  22. Lizewski S. E., Schurr J. R., Jackson D. W., Frisk A., Carterson A. J., Schurr M. J.. 2004; Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol186:5672–5684
    [Google Scholar]
  23. Mukhopadhyay B., Stoddard S. F., Wolfe R. S.. 1998; Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain ΔH. J Biol Chem273:5155–5166
    [Google Scholar]
  24. O'Toole G. A., Kolter R.. 1998a; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461
    [Google Scholar]
  25. O'Toole G. A., Kolter R.. 1998b; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304
    [Google Scholar]
  26. Phibbs P. V. Jr, Feary T. W., Blevins W. T.. 1974; Pyruvate carboxylase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. J Bacteriol118:999–1009
    [Google Scholar]
  27. Philippot L.. 2005; Denitrification in pathogenic bacteria: for better or worst?. Trends Microbiol13:191–192
    [Google Scholar]
  28. Potvin E., Lehoux D. E., Kukavica-Ibrulj I., Richard K. L., Sanschagrin F., Lau G. W., Levesque R. C.. 2003; In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol5:1294–1308
    [Google Scholar]
  29. Rosenau F., Jaeger K.. 2000; Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie82:1023–1032
    [Google Scholar]
  30. Rozen S., Skaletsky H.. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol132:365–386
    [Google Scholar]
  31. Rukholm G., Mugabe C., Azghani A. O., Omri A.. 2006; Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Agents27:247–252
    [Google Scholar]
  32. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G.. 1988; Evolutionary conservation among biotin enzymes. J Biol Chem263:6461–6464
    [Google Scholar]
  34. Schell M. A.. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626
    [Google Scholar]
  35. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079
    [Google Scholar]
  36. Schuster M., Urbanowski M. L., Greenberg E. P.. 2004; Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A101:15833–15839
    [Google Scholar]
  37. Segura D., Espin G.. 2004; Inactivation of pycA, encoding pyruvate carboxylase activity, increases poly- β-hydroxybutyrate accumulation in Azotobacter vinelandii on solid medium. Appl Microbiol Biotechnol65:414–418
    [Google Scholar]
  38. Shan Z., Xu H., Shi X., Yu Y., Yao H., Zhang X., Bai Y., Gao C., Saris P. E., Qiao M.. 2004; Identification of two new genes involved in twitching motility in Pseudomonas aeruginosa. Microbiology150:2653–2661
    [Google Scholar]
  39. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/technology (NY1:784–791
    [Google Scholar]
  40. Stehr F., Kretschmar M., Kröger C., Hube B., Schäfer W.. 2003; Microbial lipases as virulence factors. J Mol Catal, B Enzym22:347–355
    [Google Scholar]
  41. Vallet I., Olson J. W., Lory S., Lazdunski A., Filloux A.. 2001; The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters ( cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A98:6911–6916
    [Google Scholar]
  42. van Heeckeren A. M., Schluchter M. D.. 2002; Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim36:291–312
    [Google Scholar]
  43. Wade D. S., Calfee M. W., Rocha E. R., Ling E. A., Engstrom E., Coleman J. P., Pesci E. C.. 2005; Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol187:4372–4380
    [Google Scholar]
  44. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A.. 2005; Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol187:6571–6576
    [Google Scholar]
  45. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J.. 1994; Construction of improved Escherichia–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene148:81–86
    [Google Scholar]
  46. Wilhelm S., Tommassen J., Jaeger K. E.. 1999; A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol181:6977–6986
    [Google Scholar]
  47. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R.. other authors 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell3:593–603
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011239-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011239-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error