1887

Abstract

Sterols are a major class of membrane lipids in eukaryotes. In , sterol 24-C-methyltransferase (Erg6p), C-8 sterol isomerase (Erg2p), C-5 sterol desaturase (Erg31p, Erg32p), C-22 sterol desaturase (Erg5p) and C-24 (28) sterol reductase (Sts1p/Erg4p) have been predicted, but not yet determined, to catalyse a sequence of reactions from zymosterol to ergosterol. Disruption mutants of these genes were unable to synthesize ergosterol, and most were tolerant to the polyene drugs amphotericin B and nystatin. Disruption of or did not cause ergosterol deficiency or tolerance to polyene drugs, indicating that the two C-5 sterol desaturases have overlapping functions. GFP-tagged DRM (detergent-resistant membrane)-associated protein Pma1p localized to the plasma membrane in Δ mutants. DRM fractionation revealed that the association between Pma1-GFP and DRM was weakened in Δ but not in other mutants. Several GFP-tagged plasma membrane proteins were tested, and an amino acid permease homologue, SPBC359.03c, was found to mislocalize to intracellular punctate structures in the Δ mutants. These results indicate that these proteins are responsible for ergosterol biosynthesis in fission yeast, similar to the situation in . Furthermore, in fission yeast, ergosterol is important for plasma membrane structure and function and for localization of plasma membrane proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011155-0
2008-03-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/830.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011155-0&mimeType=html&fmt=ahah

References

  1. Alcazar-Fuoli L., Mellado E., Garcia-Effron G., Buitrago M. J., Lopez J. F., Grimalt J. O., Cuenca-Estrella J. M., Rodriguez-Tudela J. L.. 2006; Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3b: role in sterol biosynthesis and antifungal drug susceptibility. Antimicrob Agents Chemother50:453–460
    [Google Scholar]
  2. Alfa C., Fantes P., Hyams J., McLoed M., Warbrick E.. 1993; Experiments with Fission Yeast: a Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  3. Alonso M. A., Millán J.. 2001; The role of lipid rafts in signaling and membrane trafficking in T lymphocytes. J Cell Sci114:3957–3965
    [Google Scholar]
  4. Arthington B. A., Bennett L. G., Skatrud P. L., Guynn C. J., Barbuch R. J., Ulbright C. E., Bard M.. 1991; Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene102:39–44
    [Google Scholar]
  5. Bagnat M., Keränen S., Shevchenko A., Shevchenko A., Simons K.. 2000; Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A97:3254–3259
    [Google Scholar]
  6. Bagnat M., Chang A., Simons K.. 2001; Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell12:4129–4138
    [Google Scholar]
  7. Bone N., Millar J. B. A., Toda T., Armstrong J.. 1998; Regulated vacuole fusion and fission in Schizosaccharomyces pombe : an osmotic response dependent on MAP kinases. Curr Biol8:135–144
    [Google Scholar]
  8. Cheng H., Sugiura R., Wu W., Fujita M., Lu Y., Sio S. O., Kawai R., Takegawa K., Shuntoh H., Kuno T.. 2002; Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway, and its connection to calcineurin function. Mol Biol Cell13:2963–2976
    [Google Scholar]
  9. Daum G., Lees N. D., Bard M., Dickson R.. 1998; Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae . Yeast14:1471–1510
    [Google Scholar]
  10. Dupré S., Haguenauer-Tsapis R.. 2003; Raft partitioning of the yeast uracil permease during trafficking along the endocytic pathway. Traffic4:83–96
    [Google Scholar]
  11. Eisenkolb M., Zenzmaier C., Leitner E., Schneiter R.. 2002; A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol Biol Cell13:4414–4428
    [Google Scholar]
  12. Emter R., Heese-Peck A., Kralli A.. 2002; ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett521:57–61
    [Google Scholar]
  13. Enyenihi A. H., Saunders W. S.. 2003; Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae . Genetics163:47–54
    [Google Scholar]
  14. Gaigg B., Timischl B., Corbino L., Schneiter R.. 2005; Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J Biol Chem280:22515–22522
    [Google Scholar]
  15. Geber A., Hitchcock C. A., Swartz J. E., Pullen F. S., Marsden K. E., Kwon-Chung K. J., Bennett J. E.. 1995; Deletion of the yeast Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother39:2708–2717
    [Google Scholar]
  16. Grossmann G., Opekarova M., Novakova L., Stolz J., Tanner W.. 2006; Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae . Eukaryot Cell5:945–953
    [Google Scholar]
  17. Heese-Peck A., Pichler H., Zanolari B., Watanabe R., Daum G., Riezman H.. 2002; Multiple functions of sterols in yeast endocytosis. Mol Biol Cell13:2664–2680
    [Google Scholar]
  18. Huber T. B., Schermer B., Müller R. U., Höhne M., Bartram M., Calixto A., Hagmann H., Reinhardt C., Koos F.. other authors 2006; Posocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A103:17079–17086
    [Google Scholar]
  19. Iwaki T., Osawa F., Onishi M., Koga T., Fujita Y., Hosomi A., Tanaka N., Fukui Y., Takegawa K.. 2003; Characterization of vps33 +, a gene required for vacuolar biogenesis and protein sorting in Schizosaccharomyces pombe . Yeast20:845–855
    [Google Scholar]
  20. Iwaki T., Giga-Hama Y., Takegawa K.. 2006; A survey of all 11 ABC transporters in fission yeast: two novel ABC transporers are required for red pigment accumulation in a Schizosaccharomyces pombe adenine biosynthetic mutant. Microbiology152:2309–2321
    [Google Scholar]
  21. Jia Z. P., McCullough N., Martel R., Hemmingsen S., Young P. G.. 1992; Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J11:1631–1640
    [Google Scholar]
  22. Kato M., Wickner W.. 2001; Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J20:4035–4040
    [Google Scholar]
  23. Kaur R., Bachhawat A. K.. 1999; The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae . Microbiology145:809–818
    [Google Scholar]
  24. Kishimoto T., Yamamoto T., Tanaka K.. 2005; Defects in structural integrity of ergosterol and the Cdc50p-Drsp putative phospholipids translocase cause accumulation of endocytic membranes, onto which actin patches are assembled in yeast. Mol Biol Cell16:5592–5609
    [Google Scholar]
  25. Lauwers E., André B.. 2006; Association of yeast transporters with detergent-resistant membranes correlates with their cell-surface location. Traffic7:1045–1059
    [Google Scholar]
  26. Lees N. D., Skaggs B., Kirsch D. R., Brad M.. 1995; Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae – a review. Lipids30:221–226
    [Google Scholar]
  27. Lichtenberg D., Goñi F. M., Heerklotz H.. 2005; Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci30:430–436
    [Google Scholar]
  28. Maguy A., Hebett T. E., Nattel S.. 2006; Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res69:798–807
    [Google Scholar]
  29. Malathi K., Higaki K., Tinkelenberg A. H., Balderes D., Almanzar-Paramio D., Wilcox L. J., Erdeniz N., Redican F., Padamsee M.. other authors 2004; Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J Cell Biol164:547–556
    [Google Scholar]
  30. Malinska K., Malinsky J., Prekarova M., Tanner W.. 2004; Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci117:6031–6041
    [Google Scholar]
  31. Matsumoto S., Bandyopadhyay A., Kwiatkowski D. J., Maitra U., Matsumoto T.. 2002; Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe . Genetics161:1053–1063
    [Google Scholar]
  32. Miyazaki Y., Geber A., Miyazaki H., Falconer D., Parkinson T., Hitchcock C., Grimberg B., Nyswaner K., Bennett J. E.. 1999; Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans . Gene236:43–51
    [Google Scholar]
  33. Moreno S., Klar A., Nurse P.. 1991; Molecular genetic analysis of fission yeast Schizosaccharomyces pombe . Methods Enzymol194:795–823
    [Google Scholar]
  34. Morita T., Takegawa K.. 2004; A simple and efficient procedure for transformation of Schizosaccharomyces pombe . Yeast21:613–617
    [Google Scholar]
  35. Mukhopadhyay K., Kohli A., Prasad R.. 2002; Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother46:3695–3705
    [Google Scholar]
  36. Munn A. L., Heese-Peck A., Stevenson B. J., Pichler H., Riezman H.. 1999; Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell10:3943–3957
    [Google Scholar]
  37. Munro S.. 2003; Lipid rafts: elusive or illusive?. Cell115:377–388
    [Google Scholar]
  38. Murray J. M., Johnson D. I.. 2001; The Cdc42p GTPase and its regulators of Nrf1p and Scd1p are involved in endocytic trafficking in the fission yeast Schizosaccharomyces pombe . J Biol Chem276:3004–3009
    [Google Scholar]
  39. Nagao K., Taguchi Y., Arioka M., Kadokura H., Takatsuki A., Yoda K., Yamasaki M.. 1995; bfr1 +, a novel gene of Schizosaccharomyces pombe which confers brefeldin A resistance, is related to the ATP-binding cassette superfamily. J Bacteriol177:1536–1543
    [Google Scholar]
  40. Nakamura T., Nakamura-Kubo M., Hirata A., Shimoda C.. 2001; The Schizosaccharomyces pombe spo3 + gene is required for assembly of the forespore membrane and genetically interacts with psy1 +-encoding syntaxin-like protein. Mol Biol Cell12:3955–3972
    [Google Scholar]
  41. Nishi K., Yoshida M., Nishimura M., Nishikawa M., Nishiyama M., Horinouchi S., Beppu T.. 1992; A leptomycin B resistance gene of Schizosaccharomyces pombe encodes a protein similar to the mammalian P-glycoproteins. Mol Microbiol6:761–769
    [Google Scholar]
  42. Parks L. W., Smith S. J., Crowley J. H.. 1995; Biochemical and physiological effects of sterol alterations in yeast – a review. Lipids30:227–230
    [Google Scholar]
  43. Parks L. W., Crowley J. H., Leak F. W., Smith S. J., Tomeo M. E.. 1999; Use of sterol mutants as probes for sterol functions in the yeast, Saccharomyces cerevisiae . Crit Rev Biochem Mol Biol34:399–404
    [Google Scholar]
  44. Pasrija R., Prasad T., Prasad R.. 2005a; Membrane raft lipid constituents affect drug susceptibilities of Candida albicans . Biochem Soc Trans33:1219–1223
    [Google Scholar]
  45. Pasrija R., Krishnamurthy S., Prasad T., Ernst J. F., Prasad R.. 2005b; Squalene epoxidase encoded by ERG1 affects morphologenesis and drug susceptibilities of Candida albicans . J Antimicrob Chemother55:905–913
    [Google Scholar]
  46. Pelkmans L.. 2005; Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta1746:295–304
    [Google Scholar]
  47. Pichler H., Riezman H.. 2004; Where sterols are required for endocytosis. Biochim Biophys Acta1666:51–61
    [Google Scholar]
  48. Proszynski T. J., Klemm R. W., Gravert M., Hsu P. P., Gloor Y., Wagner J., Kozak K., Graner H., Walzer K.. other authors 2005; A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci U S A102:17981–17986
    [Google Scholar]
  49. Raymond C. K., Howald-Stevenson I., Vater C. A., Stevens T. H.. 1992; Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell3:1389–1402
    [Google Scholar]
  50. Sanglard D., Ischer F., Parkinson T., Falconer D., Bille J.. 2003; Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother47:2404–2412
    [Google Scholar]
  51. Sharma S. C.. 2006; Implications of sterol structure for membrane lipid composition, fluidity and phospholipids asymmetry in Saccharomyces cerevisiae . FEMS Yeast Res6:1047–1051
    [Google Scholar]
  52. Shimanuki M., Goebl M., Yanagida M., Toda T.. 1992; Fission yeast sts1+ gene encodes a protein similar to the chicken lamin B receptor and is implicated in pleiotropic drug-sensitivity, divalent cation-sensitivity, and osmoregulation. Mol Biol Cell3:263–273
    [Google Scholar]
  53. Shobayashi M., Mitsueda S., Ago M., Fujii T., Iwashita K., Iefuji H.. 2005; Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae . Biosci Biotechnol Biochem69:2381–2388
    [Google Scholar]
  54. Simons K., Ikonen E.. 1997; Functional rafts in cell membranes. Nature387:569–572
    [Google Scholar]
  55. Simons K., van Meer G.. 1988; Lipid sorting in epithelial cells. Biochemistry27:6197–6202
    [Google Scholar]
  56. Skaggs B. A., Alexander J. F., Pierson C. A., Schweitzer K. S., Chun K. T., Koegel C., Barbuch R., Bard M.. 1996; Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene169:105–109
    [Google Scholar]
  57. Sturley S. L.. 2000; Conservation of eukaryotic sterol homeostasis: new insights from studies in budding yeast. Biochim Biophys Acta 1529;155–163
    [Google Scholar]
  58. Suga M., Hatakeyama T.. 2001; High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast18:1015–1021
    [Google Scholar]
  59. Tabuchi M., Iwaihara O., Ohtani Y., Ohuchi N., Sakurai J., Morita T., Iwahara S., Takegawa K.. 1997; Vacuolar protein sorting in fission yeast: cloning, biosynthesis, transport, and processing of carboxypeptidase Y from Schizosaccharomyces pombe . J Bacteriol179:4179–4189
    [Google Scholar]
  60. Takeda T., Kawate T., Chang F.. 2004; Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat Cell Biol6:1142–1144
    [Google Scholar]
  61. Takegawa K., DeWald D. B., Emr S. D.. 1995; Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J Cell Sci108:3745–3756
    [Google Scholar]
  62. Todd B. L., Stewart E. V., Burg J. S., Hughes A. L., Espenshade P.. 2006; Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell Biol26:2817–2831
    [Google Scholar]
  63. Turi T. G., Rose J. K.. 1995; Characterization of a novel Schizosaccharomyces pombe multidrug resistance transporter conferring brefeldin A resistance. Biochem Biophys Res Commun213:410–418
    [Google Scholar]
  64. Umebayashi K., Nakano A.. 2003; Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol161:1117–1131
    [Google Scholar]
  65. van den Hazel H. B., Pichler H., do Valle Matta M. A., Leitner E., Goffeau A., Daum G.. 1999; PDR16 and PDR17 , two homologous genes of Saccharomyces cerevisiae , affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem274:1934–1941
    [Google Scholar]
  66. Wachtler V., Balasubramanian M. K.. 2006; Yeast lipid rafts? – an emerging view. Trends Cell Biol16:1–4
    [Google Scholar]
  67. Wachtler V., Rajagopalan S., Balasubramanian M. K.. 2003; Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe . J Cell Sci116:867–874
    [Google Scholar]
  68. Young L. Y., Hull C. M., Heitman J.. 2003; Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae . Antimicrob Agents Chemother47:2717–2724
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011155-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011155-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error