1887

Abstract

Clumping factor B (ClfB) of binds to cytokeratin 10 and to fibrinogen. In this study the binding site in human fibrinogen was localized to a short region within the C terminus of the A-chain. ClfB only bound to the A-chain of fibrinogen in a ligand-affinity blot and in solid-phase assays with purified recombinant fibrinogen chains. A variant of fibrinogen with wild-type B- and -chains but with a deletion that lacked the C-terminal residues from 252–610 of the A-chain did not support adherence of Newman expressing ClfB. A series of truncated mutants of the recombinant A-chain were tested for their ability to support adherence of Newman ClfB, which allowed the binding site to be localized to a short segment of the unfolded flexible repeated sequence within the C terminus of the A-chain. This was confirmed by two amino acid substititions within repeat 5 of the recombinant A-chain which did not support adherence of Newman ClfB. expressing ClfB mutants with amino acid substitutions (N256 and Q235) located in the putative ligand-binding trench between domains N2 and N3 of the A-domain were defective in adherence to immobilized fibrinogen and cytokeratin 10, suggesting that both ligands bind to the same or overlapping regions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010868-0
2008-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/550.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010868-0&mimeType=html&fmt=ahah

References

  1. Bolyard, M. G. & Lord, S. T. ( 1988; ). High-level expression of a functional human fibrinogen gamma chain in Escherichia coli. Gene 66, 183–192.[CrossRef]
    [Google Scholar]
  2. Burton, R. A., Tsurupa, G., Medved, L. & Tjandra, N. ( 2006; ). Identification of an ordered compact structure within the recombinant bovine fibrinogen alphaC-domain fragment by NMR. Biochemistry 45, 2257–2266.[CrossRef]
    [Google Scholar]
  3. Cierniewski, C. S. & Budzynski, A. Z. ( 1992; ). Involvement of the alpha-chain in fibrin clot formation. Effect of monoclonal-antibodies. Biochemistry 31, 4248–4253.[CrossRef]
    [Google Scholar]
  4. Cole, A. M., Tahk, S., Oren, A., Yoshioka, D., Kim, Y. H., Park, A. & Ganz, T. ( 2001; ). Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 8, 1064–1069.
    [Google Scholar]
  5. Credo, R. B., Curtis, C. G. & Lorand, L. ( 1981; ). Alpha-chain domain of fibrinogen controls generation of fibrinoligase (coagulation factor XIIIa). Calcium ion regulatory aspects. Biochemistry 20, 3770–3778.[CrossRef]
    [Google Scholar]
  6. Davis, S. L., Gurusiddappa, S., McCrea, K. W., Perkins, S. & Hook, M. ( 2001; ). SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 276, 27799–27805.[CrossRef]
    [Google Scholar]
  7. Doolittle, R. F. ( 1984; ). Fibrinogen and fibrin. Annu Rev Biochem 53, 195–229.[CrossRef]
    [Google Scholar]
  8. Duthie, E. S. & Lorenz, L. L. ( 1952; ). Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol 6, 95–107.[CrossRef]
    [Google Scholar]
  9. Gorkun, O. V., Veklich, Y. I., Medved, L. V., Henschen, A. H. & Weisel, J. W. ( 1994; ). Role of the alpha C domains of fibrin in clot formation. Biochemistry 33, 6986–6997.[CrossRef]
    [Google Scholar]
  10. Gorkun, O. V., Henschen-Edman, A. H., Ping, L. F. & Lord, S. T. ( 1998; ). Analysis of A alpha 251 fibrinogen: the alpha C domain has a role in polymerization, albeit more subtle than anticipated from the analogous proteolytic fragment X. Biochemistry 37, 15434–15441.[CrossRef]
    [Google Scholar]
  11. Henschen, A. & McDonagh, J. ( 1986; ). In Fibrinogen, Fibrin and Factor XIII in Blood Coagulation, pp. 171–241. Edited by R. F. A. Zwaal & H. C. Hemker. Amsterdam: Elsevier Science Publishers.
  12. Herrick, S., Blanc-Brude, O., Gray, A. & Laurent, G. ( 1999; ). Fibrinogen. Int J Biochem Cell Biol 31, 741–746.[CrossRef]
    [Google Scholar]
  13. Jonsson, K., McDevitt, D., McGavin, M. H., Patti, J. M. & Hook, M. ( 1995; ). Staphylococcus aureus expresses a major histocompatibility complex class II analog. J Biol Chem 270, 21457–21460.[CrossRef]
    [Google Scholar]
  14. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  15. Lord, S. T. ( 1985; ). Expression of a cloned human fibrinogen cDNA in Escherichia coli: synthesis of an A alpha polypeptide. DNA 4, 33–38.[CrossRef]
    [Google Scholar]
  16. Mazmanian, S. K., Liu, G., Ton-That, H. & Schneewind, O. ( 1999; ). Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760–763.[CrossRef]
    [Google Scholar]
  17. McAleese, F. M., Walsh, E. J., Sieprawska, M., Potempa, J. & Foster, T. J. ( 2001; ). Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276, 29969–29978.[CrossRef]
    [Google Scholar]
  18. McDevitt, D., Francois, P., Vaudaux, P. & Foster, T. J. ( 1994; ). Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11, 237–248.[CrossRef]
    [Google Scholar]
  19. McDevitt, D., Francois, P., Vaudaux, P. & Foster, T. J. ( 1995; ). Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol Microbiol 16, 895–907.[CrossRef]
    [Google Scholar]
  20. McDevitt, D., Nanavaty, T., House-Pompeo, K., Bell, E., Turner, N., McIntire, L., Foster, T. & Hook, M. ( 1997; ). Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem 247, 416–424.[CrossRef]
    [Google Scholar]
  21. McGavin, M. H., Krajewska-Pietrasik, D., Ryden, C. & Hook, M. ( 1993; ). Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect Immun 61, 2479–2485.
    [Google Scholar]
  22. Medved, L. V., Gorkun, O. V. & Privalov, P. L. ( 1983; ). Structural organization of C-terminal parts of fibrinogen A alpha-chains. FEBS Lett 160, 291–295.[CrossRef]
    [Google Scholar]
  23. Medved, L. V., Gorkun, O. V., Manyakov, V. F. & Belitser, V. A. ( 1985; ). The role of fibrinogen alpha C-domains in the fibrin assembly process. FEBS Lett 181, 109–112.[CrossRef]
    [Google Scholar]
  24. Miajlovic, H., Loughman, A., Brennan, M., Cox, D. & Foster, T. J. ( 2007; ). Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 75, 3335–3343.[CrossRef]
    [Google Scholar]
  25. Navarre, W. W. & Schneewind, O. ( 1994; ). Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol 14, 115–121.[CrossRef]
    [Google Scholar]
  26. Ni Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Hook, M. & Foster, T. J. ( 1998; ). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30, 245–257.[CrossRef]
    [Google Scholar]
  27. O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J. & Foster, T. J. ( 2002; ). Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4, 759–770.[CrossRef]
    [Google Scholar]
  28. O'Connell, D. P., Nanavaty, T., McDevitt, D., Gurusiddappa, S., Hook, M. & Foster, T. J. ( 1998; ). The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site. J Biol Chem 273, 6821–6829.[CrossRef]
    [Google Scholar]
  29. Palma, M., Wade, D., Flock, M. & Flock, J. I. ( 1998; ). Multiple binding sites in the interaction between an extracellular fibrinogen-binding protein from Staphylococcus aureus and fibrinogen. J Biol Chem 273, 13177–13181.[CrossRef]
    [Google Scholar]
  30. Peacock, S. J., de Silva, I. & Lowy, F. D. ( 2001; ). What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 9, 605–610.[CrossRef]
    [Google Scholar]
  31. Perkins, S., Walsh, E. J., Deivanayagam, C. C., Narayana, S. V., Foster, T. J. & Hook, M. ( 2001; ). Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus. J Biol Chem 276, 44721–44728.[CrossRef]
    [Google Scholar]
  32. Phonimdaeng, P., O'Reilly, M., Nowlan, P., Bramley, A. J. & Foster, T. J. ( 1990; ). The coagulase of Staphylococcus aureus 8325-4. Sequence analysis and virulence of site-specific coagulase-deficient mutants. Mol Microbiol 4, 393–404.[CrossRef]
    [Google Scholar]
  33. Ponnuraj, K., Bowden, M. G., Davis, S., Gurusiddappa, S., Moore, D., Choe, D., Xu, Y., Hook, M. & Narayana, S. V. ( 2003; ). A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115, 217–228.[CrossRef]
    [Google Scholar]
  34. Rudchenko, S., Trakht, I. & Sobel, J. H. ( 1996; ). Comparative structural and functional features of the human fibrinogen alpha C domain and the isolated alpha C fragment. Characterization using monoclonal antibodies to defined COOH-terminal A alpha chain regions. J Biol Chem 271, 2523–2530.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Labratory.
  36. Tsurupa, G. & Medved, L. ( 2001; ). Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) alpha C-domains. Biochemistry 40, 801–808.[CrossRef]
    [Google Scholar]
  37. Tsurupa, G., Tsonev, L. & Medved, L. ( 2002; ). Structural organization of the fibrin(ogen) alpha C-domain. Biochemistry 41, 6449–6459.[CrossRef]
    [Google Scholar]
  38. Walsh, E. J., O'Brien, L. M., Liang, X., Hook, M. & Foster, T. J. ( 2004; ). Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 279, 50691–50699.[CrossRef]
    [Google Scholar]
  39. Wann, E. R., Gurusiddappa, S. & Hook, M. ( 2000; ). The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275, 13863–13871.[CrossRef]
    [Google Scholar]
  40. Weisel, J. W. & Medved, L. ( 2001; ). The structure and function of the αC domains of fibrinogen. Ann N Y Acad Sci 936, 312–327.
    [Google Scholar]
  41. Yang, Z., Kollman, J. M., Pandi, L. & Doolittle, R. F. ( 2001; ). Crystal structure of native chicken fibrinogen at 2.7 Å resolution. Biochemistry 40, 12515–12523.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010868-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010868-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error