1887

Abstract

The ability of to reduce nitric oxide (NO) may have important immunomodulatory effects on the host during infection. Therefore, a comprehensive understanding of the regulatory mechanism of the nitric oxide reductase gene () needs to be elucidated. To accomplish this, we analysed the functional regions of the upstream region. The promoter contains an extended −10 motif (TGNTACAAT) that is required for high-level expression. Deletion and substitution analysis of the upstream region revealed that no sequence upstream of the −10 motif is involved in regulation under anaerobic conditions or in the presence of NO. However, replacement of a 29 bp inverted repeat sequence immediately downstream of the extended −10 motif gave high levels of aerobic expression of a  : :  fusion. Insertional inactivation of gonococcal , predicted to bind to this inverted repeat sequence, resulted in the loss of repression and eliminated NO induction capacity. Single-copy complementation of restored regulation of both transcription and NorB activity by NO. In , expression of a gonococcal gene repressed gonococcal ; induction of occurred in the presence of exogenously added NO. NsrR also regulates and , as well as its own expression. We also determined that Fur regulates by a novel indirect activation method, by preventing the binding of a gonococcal ArsR homologue, a second repressor whose putative binding site overlaps the Fur binding site.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010470-0
2008-01-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/226.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010470-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1992; ). Short Protocols in Molecular Biology, 2nd edn. New York: Wiley.
  3. Bodenmiller, D. M. & Spiro, S. ( 2006; ). The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188, 874–881.[CrossRef]
    [Google Scholar]
  4. Busenlehner, L. S., Pennella, M. A. & Giedroc, D. P. ( 2003; ). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27, 131–143.[CrossRef]
    [Google Scholar]
  5. Cardinale, J. A. & Clark, V. L. ( 2005; ). Determinants of nitric oxide steady-state levels during anaerobic respiration by Neisseria gonorrhoeae. Mol Microbiol 58, 177–188.[CrossRef]
    [Google Scholar]
  6. Clark, V. L., Campbell, L. A., Palermo, D. A., Evans, T. M. & Klimpel, K. W. ( 1987; ). Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae. Infect Immun 55, 1359–1364.
    [Google Scholar]
  7. Clark, V. L., Knapp, J. S., Thompson, S. & Klimpel, K. W. ( 1988; ). Presence of antibodies to the major anaerobically induced gonococcal outer membrane protein in sera from patients with gonococcal infections. Microb Pathog 5, 381–390.[CrossRef]
    [Google Scholar]
  8. Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C., Thomson, A. J., Green, J. & Poole, R. K. ( 2002; ). NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21, 3235–3244.[CrossRef]
    [Google Scholar]
  9. Davis, K. L., Martin, E., Turko, I. V. & Murad, F. ( 2001; ). Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41, 203–236.[CrossRef]
    [Google Scholar]
  10. Delany, I., Rappuoli, R. & Scarlato, V. ( 2004; ). Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52, 1081–1090.[CrossRef]
    [Google Scholar]
  11. Dykxhoorn, D. M., St Pierre, R. & Linn, T. ( 1996; ). A set of compatible tac promoter expression vectors. Gene 177, 133–136.[CrossRef]
    [Google Scholar]
  12. Escolar, L., Perez-Martin, J. & de Lorenzo, V. ( 1999; ). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181, 6223–6229.
    [Google Scholar]
  13. Filenko, N., Spiro, S., Browning, D. F., Squire, D., Overton, T. W., Cole, J. & Constantinidou, C. ( 2007; ). The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189, 4410–4417.[CrossRef]
    [Google Scholar]
  14. Garnett, G. P., Mertz, K. J., Finelli, L., Levine, W. C. & St. Louis, M. E. ( 1999; ). The transmission dynamics of gonorrhoea: modelling the reported behavior of infected patients from Newark, New Jersey. Philos Trans R Soc Lond B Biol Sci 354, 787–797.[CrossRef]
    [Google Scholar]
  15. Giel, J. L., Rodionov, D., Liu, M., Blattnet, F. R. & Kiley, P. J. ( 2006; ). IscR-dependent gene expression links iron–sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60, 1058–1075.[CrossRef]
    [Google Scholar]
  16. Gilberthorpe, N. J., Lee, M. E., Stevanin, T. M., Read, R. C. & Poole, R. K. ( 2007; ). NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages. Microbiology 153, 1756–1771.[CrossRef]
    [Google Scholar]
  17. Grifantini, R., Sebastian, S., Frigimelica, E., Draghi, M., Bartolini, E., Muzzi, A., Rappuoli, R., Grandi, G. & Genco, C. A. ( 2003; ). Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci U S A 100, 9542–9547.[CrossRef]
    [Google Scholar]
  18. Grifantini, R., Frigimelica, E., Delany, I., Bartolini, E., Giovinazzi, S., Balloni, S., Agarwal, S., Galli, G., Genco, C. & Grandi, G. ( 2004; ). Characterization of a novel Neisseria meningitidis Fur and iron-regulated operon required for protection from oxidative stress: utility of DNA microarray in the assignment of the biological role of hypothetical genes. Mol Microbiol 54, 962–979.[CrossRef]
    [Google Scholar]
  19. Gruber, T. M. & Gross, C. A. ( 2003; ). Multiple sigma factors and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441–466.[CrossRef]
    [Google Scholar]
  20. Hantke, K. ( 2001; ). Iron and metal regulation in bacteria. Curr Opin Microbiol 4, 172–177.[CrossRef]
    [Google Scholar]
  21. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  22. Householder, T. C., Belli, W. A., Lissenden, S., Cole, J. A. & Clark, V. L. ( 1999; ). cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol 181, 541–551.
    [Google Scholar]
  23. Householder, T. C., Fozo, E. M., Cardinale, J. A. & Clark, V. L. ( 2000; ). Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide. Infect Immun 68, 5241–5246.[CrossRef]
    [Google Scholar]
  24. Justino, M. C., Vincente, J. B., Teixeira, M. & Saraiva, L. M. ( 2005; ). New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 280, 2636–2643.[CrossRef]
    [Google Scholar]
  25. Justino, M. C., Almeida, C. C., Goncalves, V. L., Teixeira, M. & Saraiva, L. M. ( 2006; ). Escherichia coli YtfE is a di-iron protein with an important function in the assembly of iron–sulphur clusters. FEMS Microbiol Lett 257, 278–284.[CrossRef]
    [Google Scholar]
  26. Justino, M. C., Almeida, C. C., Teixeira, M. & Saraiva, L. M. ( 2007; ). Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron–sulfur clusters. J Biol Chem 282, 10352–10359.[CrossRef]
    [Google Scholar]
  27. Keilty, S. & Rosenberg, M. ( 1987; ). Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem 262, 6389–6395.
    [Google Scholar]
  28. Kellogg, D. S., Jr, Peacock, W. L., Jr, Deacon, W. E., Brown, L. & Pirkle, C. I. ( 1963; ). Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol 85, 1274–1279.
    [Google Scholar]
  29. Knapp, J. S. & Clark, V. L. ( 1984; ). Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infect Immun 46, 176–181.
    [Google Scholar]
  30. Lissenden, S., Mohan, S., Overton, T., Regan, T., Crooke, H., Cardinale, J. A., Householder, T. C., Adams, P., O'Conner, C. D. & other authors ( 2000; ). Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygen-limited growth. Mol Microbiol 37, 839–855.[CrossRef]
    [Google Scholar]
  31. Masse, E. & Gottesman, S. ( 2002; ). Small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620–4625.[CrossRef]
    [Google Scholar]
  32. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Murakami, K. S. & Darst, S. A. ( 2003; ). Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol 13, 31–39.[CrossRef]
    [Google Scholar]
  34. Ochsner, U. A. & Vasil, M. L. ( 1996; ). Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci U S A 93, 4409–4414.[CrossRef]
    [Google Scholar]
  35. Overton, T. W., Whitehead, R., Li, Y., Snyder, L. A., Saunders, N. J., Smith, H. & Cole, J. A. ( 2006; ). Coordinated regulation of the Neisseria gonorrhoeae truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ–NarP. J Biol Chem 281, 33115–33126.[CrossRef]
    [Google Scholar]
  36. Pennella, M. A. & Giedroc, D. P. ( 2005; ). Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals 18, 413–428.[CrossRef]
    [Google Scholar]
  37. Rinaldo, S., Giardina, G., Brunori, M. & Cutruzzola, F. ( 2006; ). N-oxide sensing and denitrification: the DNR transcription factors. Biochem Soc Trans 34, 185–187.[CrossRef]
    [Google Scholar]
  38. Rock, J. D., Thomson, M. J., Read, R. C. & Moir, J. W. ( 2007; ). Regulation of denitrification genes in Neisseria meningitidis by nitric oxide and the repressor NsrR. J Bacteriol 189, 1138–1144.[CrossRef]
    [Google Scholar]
  39. Rodionov, D. A., Dubchak, I. L., Arkin, A. P., Alm, E. J. & Gelfand, M. S. ( 2005; ). Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1e55. doi:10.1371/journal.pcbi.0010415–431.
    [Google Scholar]
  40. Rogstam, A., Larsson, J. T., Kjelgaard, P. & von Wachenfeldt, C. ( 2007; ). Mechanisms of adaptation to nitrosative stress in Bacillus subtilis. J Bacteriol 189, 3063–3071.[CrossRef]
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Laboratory.
  42. Sebastian, S., Agarwal, S., Murphy, J. R. & Genco, C. A. ( 2002; ). The gonococcal Fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 184, 3965–3974.[CrossRef]
    [Google Scholar]
  43. Silver, L. E. & Clark, V. L. ( 1995; ). Construction of a translational lacZ fusion system to study gene regulation in Neisseria gonorrhoeae. Gene 166, 101–104.[CrossRef]
    [Google Scholar]
  44. Stefano, G. B., Goumon, Y., Bilfinger, T. V., Welters, I. D. & Cadet, P. ( 2000; ). Basal nitric oxide limits immune, nervous and cardiovascular excitation: human endothelia express a mu opiate receptor. Prog Neurobiol 60, 513–530.[CrossRef]
    [Google Scholar]
  45. Stevanin, T. M., Moir, J. W. & Read, R. C. ( 2005; ). Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun 73, 3322–3329.[CrossRef]
    [Google Scholar]
  46. Stevanin, T. M., Laver, J. R., Poole, R. K., Moir, J. W. & Read, R. C. ( 2007; ). Metabolism of nitric oxide by Neisseria meningitidis modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect 9, 981–987.[CrossRef]
    [Google Scholar]
  47. Strube, K., de Vries, S. & Cramm, R. ( 2007; ). Formation of a dinitrosyl iron complex by NorA, a nitric oxide-binding di-iron protein from Ralstonia eutropha H16. J Biol Chem 282, 20292–20300.[CrossRef]
    [Google Scholar]
  48. Tunbridge, A. J., Stevanin, T. M., Lee, M., Marriott, H. M., Moir, J. W., Read, R. C. & Dockrell, D. H. ( 2006; ). Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms. Infect Immun 74, 729–733.[CrossRef]
    [Google Scholar]
  49. Xu, C., Shi, W. & Rosen, B. ( 1996; ). The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271, 2427–2432.[CrossRef]
    [Google Scholar]
  50. Yeo, W. S., Lee, J. H., Lee, K. C. & Roe, J. H. ( 2006; ). IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe–S assembly proteins. Mol Microbiol 61, 206–218.[CrossRef]
    [Google Scholar]
  51. Zheleznova, E. E., Crosa, J. H. & Brennan, R. G. ( 2000; ). Characterization of the DNA- and metal-binding properties of Vibrio anguillarum Fur reveals conservation of a structural Zn2+ ion. J Bacteriol 182, 6264–6267.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010470-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010470-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error