1887

Abstract

Based on their localization at the boundary of the bacterial cell and its environment, outer-membrane proteins (Omps) are important determinants for interaction of bacteria with their host cell. Therefore, they can be considered as important determinants for virulence. Looking for Omps potentially involved in virulence, we identified a gene encoding a homologue of the plasminogen activator (Pla) of . Pla belongs to the class of omptins, a family of surface proteases/adhesins that exhibit different virulence-associated functions. In this report we describe the cloning and identification of the plasminogen activator homologue Lpa of and demonstrate its outer-membrane localization. Transcriptional analysis of the Lpa region revealed expression of the gene in both exponential and stationary growth phase and showed that transcription of the gene is directed by its own promoter. We also show, to our knowledge for the first time, that has the capacity to convert plasminogen into plasmin by the action of the outer-membrane Lpa protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010116-0
2007-11-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3757.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010116-0&mimeType=html&fmt=ahah

References

  1. Albers U., Reus K., Shuman H. A., Hilbi H.. 2005; The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology151:167–182
    [Google Scholar]
  2. Albert-Weissenberger C., Cazalet C., Buchrieser C.. 2007; Legionella pneumophila – a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci64:432–448
    [Google Scholar]
  3. Brüggemann H., Hagman A., Jules M., Sismeiro O., Dillies M.-A., Gouyette C., Kunst F., Steinert M., Heuner K.. other authors 2006; Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol8:1228–1240
    [Google Scholar]
  4. De Buck E., Lebeau I., Maes L., Geukens N., Meyen E., Van Mellaert L., Anné J., Lammertyn E.. 2004; A putative twin-arginine translocation pathway in Legionella pneumophila. Biochem Biophys Res Commun317:654–661
    [Google Scholar]
  5. De Buck E., Maes L., Meyen E., Van Mellaert L., Geukens N., Anné J., Lammertyn E.. 2005; Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Biophys Res Commun331:1413–1420
    [Google Scholar]
  6. De Buck E., Vranckx L., Meyen E., Maes L., Vandersmissen L., Anné J., Lammertyn E.. 2007; The twin-arginine translocation pathway is necessary for correct membrane insertion of the Rieske Fe/S protein in Legionella pneumophila. FEBS Lett581:259–264
    [Google Scholar]
  7. Edelstein P. H.. 1981; Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol14:298–303
    [Google Scholar]
  8. Hilbi H., Weber S. S., Ragaz C., Nyfeler Y., Urwyler S.. 2007; Environmental predators as models for bacterial pathogenesis. Environ Microbiol9:563–575
    [Google Scholar]
  9. Kramer R. A., Zandwijken D., Egmond M. R., Dekker N.. 2000; In vitro folding, purification and characterization of Escherichia coli outer membrane protease OmpT. Eur J Biochem267:885–893
    [Google Scholar]
  10. Kramer R. A., Vandeputte-Rutten L., de Roon G. J., Gros P., Dekker N., Egmond M. R.. 2001; Identification of essential acidic residues of outer membrane protease OmpT supports a novel active site. FEBS Lett505:426–430
    [Google Scholar]
  11. Kramer R. A., Brandenburg K., Vandeputte-Rutten L., Werkhoven M., Gros P., Dekker N., Egmond M. R.. 2002; Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT. Eur J Biochem269:1746–1752
    [Google Scholar]
  12. Kukkonen M., Korhonen T. K.. 2004; The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J Med Microbiol294:7–14
    [Google Scholar]
  13. Kukkonen M., Lähteenmäki K., Suomalainen M., Kalkkinen N., Emödy L., Läng H., Korhonen T. K.. 2001; Protein regions important for plasminogen activation and inactivation of α2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol40:1097–1111
    [Google Scholar]
  14. Kukkonen M., Suomalainen M., Kyllönen P., Lähteenmäki K., Lång H., Virkola R., Helander I. M., Holst O., Korhonen T. K.. 2004; Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol51:215–225
    [Google Scholar]
  15. Lähteenmäki K., Kyllönen P., Partanen L., Korhonen T. K.. 2005; Antiprotease inactivation by Salmonella enterica released from infected macrophages. Cell Microbiol7:529–538
    [Google Scholar]
  16. Lin J., Huang S., Zhang Q.. 2002; Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect4:325–331
    [Google Scholar]
  17. Lück P. C., Freier T., Steudel C., Knirel Y. A., Lüneberg E., Zähringer U., Helbig J. H.. 2001; A point mutation in the active site of Legionella pneumophila O-acetyltransferase results in modified lipopolysaccharide but does not influence virulence. Int J Med Microbiol291:345–352
    [Google Scholar]
  18. Miller J. H.. 1972; Experiments in Molecular Biology Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  19. Molmeret M., Horn M., Wagner M., Santic M., Abu Kwaik Y.. 2005; Amoebae as training ground for intracellular bacterial pathogens. Appl Environ Microbiol71:20–28
    [Google Scholar]
  20. Molofsky A. B., Swanson M. S.. 2004; Differentiate to thrive lessons from the Legionella pneumophila life cycle. Mol Microbiol53:29–40
    [Google Scholar]
  21. Morales V. M., Backman A., Bagdasarian M.. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene97:39–47
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Sodeinde O. A., Subrahmanyam Y. V. B. K., Stark K., Quan T., Bao Y., Goguen J. D.. 1992; A surface protease and the invasive character of plague. Science258:1004–1007
    [Google Scholar]
  24. Studier F. W., Moffatt B. A.. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130
    [Google Scholar]
  25. Vandeputte-Rutten L., Kramer R. A., Kroon J., Dekker N., Egmond M. R., Gros P.. 2001; Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J20:5033–5039
    [Google Scholar]
  26. Wagner C., Khan A. S., Kamphausen T., Schmausser B., Ünal C., Lorenz U., Fischer G., Hacker J., Steinert M.. 2007; Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cell Microbiol9:450–462
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010116-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010116-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error