1887

Abstract

The interactions between the ammonium assimilatory pathways and -lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene () in two industrial -lactam-producing strains of . The strains used were an adipoyl-7-ADCA- and a penicillin-producing strain. The gene disruption caused a decrease in maximum specific growth rate of 26 % and 35 % for the adipoyl-7-ADCA-producing strain and the penicillin-producing strain, respectively, compared to the corresponding reference strains. Interestingly, no -lactam production was detected in either of the Δ strains. Supplementation with glutamate restored growth but no -lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed continued -lactam production for the reference strains whereas the Δ strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no -lactam production was detected. The results indicate that the NADPH-dependent glutamate dehydrogenase may be directly or indirectly involved in the regulation of -lactam production in industrial strains of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010017-0
2008-04-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1242.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010017-0&mimeType=html&fmt=ahah

References

  1. Baba, S., Abe, Y., Ono, C. & Hosobuchi, M. ( 2006; ). Targeted disruption of the genes, mlcR and ariB, which encode GAL4-type proteins in Penicillium citrinum. Biochim Biophys Acta 1759, 410–416.[CrossRef]
    [Google Scholar]
  2. Bautista, L. F., Aleksenko, A., Hentzer, M., Santerre-Henriksen, A. & Nielsen, J. ( 2000; ). Antisense silencing of the creA gene in Aspergillus nidulans. Appl Environ Microbiol 66, 4579–4581.[CrossRef]
    [Google Scholar]
  3. Brakhage, A. A., Sprote, P., Al-Abdallah, Q., Gehrke, A., Plattner, H. & Tuncher, A. ( 2004; ). Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol 88, 45–90.
    [Google Scholar]
  4. Caddick, M. X. ( 1994; ). Nitrogen metabolite repression. Prog Ind Microbiol 29, 323–353.
    [Google Scholar]
  5. Cantoral, J. M., Diez, B., Barredo, J. L., Alvarez, E. & Martin, J. F. ( 1987; ). High-frequency transformation of Penicillium chrysogenum. Bio/Technology 5, 494–497.[CrossRef]
    [Google Scholar]
  6. Christensen, L. H., Mandrup, G., Nielsen, J. & Villadsen, J. ( 1994; ). A robust liquid chromatographic method for measurement of medium components during penicillin fermentations. Anal Chim Acta 296, 51–62.[CrossRef]
    [Google Scholar]
  7. Crawford, L., Stepan, A. M., McAda, P. C., Rambosek, J. A., Conder, M. J., Vinci, V. A. & Reeves, C. D. ( 1995; ). Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechology (N Y) 13, 58–62.[CrossRef]
    [Google Scholar]
  8. Diez, B., Mellado, E., Rodriguez, M., Bernasconi, E. & Barredo, J. L. ( 1999; ). The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl Microbiol Biotechnol 52, 196–207.[CrossRef]
    [Google Scholar]
  9. Feng, B., Friedlin, E. & Marzluf, G. A. ( 1994; ). A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60, 4432–4439.
    [Google Scholar]
  10. Gutierrez, S., Velasco, J., Marcos, A. T., Fernandez, F. J., Fierro, F., Barredo, J. L., Diez, B. & Martin, J. F. ( 1997; ). Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol 48, 606–614.[CrossRef]
    [Google Scholar]
  11. Haas, H. & Marzluf, G. A. ( 1995; ). NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28, 177–183.[CrossRef]
    [Google Scholar]
  12. Haas, H., Bauer, B., Redl, B., Stoffler, G. & Marzluf, G. A. ( 1995; ). Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 27, 150–158.[CrossRef]
    [Google Scholar]
  13. Kinghorn, J. R. & Pateman, J. A. ( 1975; ). The structural gene for NADP l-glutamate dehydrogenase in Aspergillus nidulans. J Gen Microbiol 86, 294–300.[CrossRef]
    [Google Scholar]
  14. Laich, F., Fierro, F. & Martin, J. F. ( 2003; ). Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products. Mycol Res 107, 717–726.[CrossRef]
    [Google Scholar]
  15. Mathison, L., Soliday, C., Stephan, T., Aldrich, T. & Rambosek, J. ( 1993; ). Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG gene encoding acetyl transferase. Curr Genet 23, 33–41.[CrossRef]
    [Google Scholar]
  16. Moreira dos Santos, M. M., Thygesen, G., Kötter, P., Olsson, L. & Nielsen, J. ( 2004; ). Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res 4, 59–68.
    [Google Scholar]
  17. Naranjo, L., Martin de Valmaseda, E., Casqueiro, J., Ullan, R. V., Lamas-Maceiras, M., Banuelos, O. & Martin, J. F. ( 2004; ). Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from α-aminoadipic acid. Appl Environ Microbiol 70, 1031–1039.[CrossRef]
    [Google Scholar]
  18. Nielsen, J. & Olsson, L. ( 2002; ). An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Res 2, 175–181.[CrossRef]
    [Google Scholar]
  19. Nissen, T. L., Kielland-Brandt, M. C., Nielsen, J. & Villadsen, J. ( 2000; ). Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2, 69–77.[CrossRef]
    [Google Scholar]
  20. Pagliarulo, C., Salvatore, P., De Vitis, L. R., Colicchio, R., Monaco, C., Tredici, M., Talà, A., Bardaro, M., Lavitola, A. & other authors ( 2004; ). Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 51, 1757–1772.[CrossRef]
    [Google Scholar]
  21. Punt, P. J. & van den Hondel, C. A. ( 1992; ). Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol 216, 447–457.
    [Google Scholar]
  22. Punt, P. J., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H. & van den Hondel, C. A. ( 1987; ). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.[CrossRef]
    [Google Scholar]
  23. Robin, J., Jakobsen, M., Beyer, M., Noorman, H. & Nielsen, J. ( 2001; ). Physiological characterisation of Penicillium chrysogenum strains expressing expandase gene from Steptomyces clavuligerus during batch cultivations. Growth, adipoyl-7-ADCA production and adipic acid uptake. Appl Microbiol Biotechnol 57, 357–362.[CrossRef]
    [Google Scholar]
  24. Robin, J., Bonneau, S., Schipper, D., Noorman, H. & Nielsen, J. ( 2003a; ). Influence of the adipate and dissolved oxygen concentrations on the β-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. Metab Eng 5, 42–48.[CrossRef]
    [Google Scholar]
  25. Robin, J., Lettier, G., McIntyre, M., Noorman, H. & Nielsen, J. ( 2003b; ). Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: growth yields and morphological characterization. Biotechnol Bioeng 83, 361–368.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Shen, Y. Q., Heim, J., Solomon, N. A., Wolfe, S. & Demain, A. L. ( 1984; ). Repression of β-lactam production in Cephalosporium acremonium by nitrogen sources. J Antibiot (Tokyo) 37, 503–511.[CrossRef]
    [Google Scholar]
  28. Skatrud, P. L. & Queener, S. W. ( 1989; ). An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 78, 331–338.[CrossRef]
    [Google Scholar]
  29. Theilgaard, H. B., van den Berg, M., Mulder, C., Bovenberg, R. & Nielsen, J. ( 2001; ). Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72, 379–388.[CrossRef]
    [Google Scholar]
  30. Thykaer, J. & Nielsen, J. ( 2003; ). Metabolic engineering of β-lactam production. Metab Eng 5, 56–69.[CrossRef]
    [Google Scholar]
  31. Thykaer, J., Christensen, B. & Nielsen, J. ( 2002; ). Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation. Metab Eng 4, 151–158.[CrossRef]
    [Google Scholar]
  32. van Gulik, W. M., de Laat, W. T., Vinke, J. L. & Heijnen, J. J. ( 2000; ). Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68, 602–618.[CrossRef]
    [Google Scholar]
  33. Veenstra, A. E., van Solingen, P., Bovenberg, R. A. L. & van der Voort, L. H. M. ( 1991; ). Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. J Biotechnol 17, 81–90.[CrossRef]
    [Google Scholar]
  34. Villas-Bôas, S. G., Moxley, J. F., Akesson, M., Stephanopoulos, G. & Nielsen, J. ( 2005; ). High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388, 669–677.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010017-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010017-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error