1887

Abstract

The interactions between the ammonium assimilatory pathways and -lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene () in two industrial -lactam-producing strains of . The strains used were an adipoyl-7-ADCA- and a penicillin-producing strain. The gene disruption caused a decrease in maximum specific growth rate of 26 % and 35 % for the adipoyl-7-ADCA-producing strain and the penicillin-producing strain, respectively, compared to the corresponding reference strains. Interestingly, no -lactam production was detected in either of the Δ strains. Supplementation with glutamate restored growth but no -lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed continued -lactam production for the reference strains whereas the Δ strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no -lactam production was detected. The results indicate that the NADPH-dependent glutamate dehydrogenase may be directly or indirectly involved in the regulation of -lactam production in industrial strains of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010017-0
2008-04-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1242.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010017-0&mimeType=html&fmt=ahah

References

  1. Baba S., Abe Y., Ono C., Hosobuchi M.. 2006; Targeted disruption of the genes, mlcR and ariB, which encode GAL4-type proteins in Penicillium citrinum. Biochim Biophys Acta 1759;410–416
    [Google Scholar]
  2. Bautista L. F., Aleksenko A., Hentzer M., Santerre-Henriksen A., Nielsen J.. 2000; Antisense silencing of the creA gene in Aspergillus nidulans. Appl Environ Microbiol66:4579–4581
    [Google Scholar]
  3. Brakhage A. A., Sprote P., Al-Abdallah Q., Gehrke A., Plattner H., Tuncher A.. 2004; Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol88:45–90
    [Google Scholar]
  4. Caddick M. X.. 1994; Nitrogen metabolite repression. Prog Ind Microbiol29:323–353
    [Google Scholar]
  5. Cantoral J. M., Diez B., Barredo J. L., Alvarez E., Martin J. F.. 1987; High-frequency transformation of Penicillium chrysogenum. Bio/Technology5:494–497
    [Google Scholar]
  6. Christensen L. H., Mandrup G., Nielsen J., Villadsen J.. 1994; A robust liquid chromatographic method for measurement of medium components during penicillin fermentations. Anal Chim Acta296:51–62
    [Google Scholar]
  7. Crawford L., Stepan A. M., McAda P. C., Rambosek J. A., Conder M. J., Vinci V. A., Reeves C. D.. 1995; Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechology (N Y)13:58–62
    [Google Scholar]
  8. Diez B., Mellado E., Rodriguez M., Bernasconi E., Barredo J. L.. 1999; The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl Microbiol Biotechnol52:196–207
    [Google Scholar]
  9. Feng B., Friedlin E., Marzluf G. A.. 1994; A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol60:4432–4439
    [Google Scholar]
  10. Gutierrez S., Velasco J., Marcos A. T., Fernandez F. J., Fierro F., Barredo J. L., Diez B., Martin J. F.. 1997; Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol48:606–614
    [Google Scholar]
  11. Haas H., Marzluf G. A.. 1995; NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet28:177–183
    [Google Scholar]
  12. Haas H., Bauer B., Redl B., Stoffler G., Marzluf G. A.. 1995; Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet27:150–158
    [Google Scholar]
  13. Kinghorn J. R., Pateman J. A.. 1975; The structural gene for NADP l-glutamate dehydrogenase in Aspergillus nidulans. J Gen Microbiol86:294–300
    [Google Scholar]
  14. Laich F., Fierro F., Martin J. F.. 2003; Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products. Mycol Res107:717–726
    [Google Scholar]
  15. Mathison L., Soliday C., Stephan T., Aldrich T., Rambosek J.. 1993; Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG gene encoding acetyl transferase. Curr Genet23:33–41
    [Google Scholar]
  16. Moreira dos Santos M. M., Thygesen G., Kötter P., Olsson L., Nielsen J.. 2004; Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res4:59–68
    [Google Scholar]
  17. Naranjo L., Martin de Valmaseda E., Casqueiro J., Ullan R. V., Lamas-Maceiras M., Banuelos O., Martin J. F.. 2004; Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from α-aminoadipic acid. Appl Environ Microbiol70:1031–1039
    [Google Scholar]
  18. Nielsen J., Olsson L.. 2002; An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Res2:175–181
    [Google Scholar]
  19. Nissen T. L., Kielland-Brandt M. C., Nielsen J., Villadsen J.. 2000; Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng2:69–77
    [Google Scholar]
  20. Pagliarulo C., Salvatore P., De Vitis L. R., Colicchio R., Monaco C., Tredici M., Talà A., Bardaro M., Lavitola A.. other authors 2004; Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol51:1757–1772
    [Google Scholar]
  21. Punt P. J., van den Hondel C. A.. 1992; Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol216:447–457
    [Google Scholar]
  22. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A.. 1987; Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene56:117–124
    [Google Scholar]
  23. Robin J., Jakobsen M., Beyer M., Noorman H., Nielsen J.. 2001; Physiological characterisation of Penicillium chrysogenum strains expressing expandase gene from Steptomyces clavuligerus during batch cultivations. Growth, adipoyl-7-ADCA production and adipic acid uptake. Appl Microbiol Biotechnol57:357–362
    [Google Scholar]
  24. Robin J., Bonneau S., Schipper D., Noorman H., Nielsen J.. 2003a; Influence of the adipate and dissolved oxygen concentrations on the β-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. Metab Eng5:42–48
    [Google Scholar]
  25. Robin J., Lettier G., McIntyre M., Noorman H., Nielsen J.. 2003b; Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: growth yields and morphological characterization. Biotechnol Bioeng83:361–368
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Shen Y. Q., Heim J., Solomon N. A., Wolfe S., Demain A. L.. 1984; Repression of β-lactam production in Cephalosporium acremonium by nitrogen sources. J Antibiot (Tokyo37:503–511
    [Google Scholar]
  28. Skatrud P. L., Queener S. W.. 1989; An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene78:331–338
    [Google Scholar]
  29. Theilgaard H. B., van den Berg M., Mulder C., Bovenberg R., Nielsen J.. 2001; Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng72:379–388
    [Google Scholar]
  30. Thykaer J., Nielsen J.. 2003; Metabolic engineering of β-lactam production. Metab Eng5:56–69
    [Google Scholar]
  31. Thykaer J., Christensen B., Nielsen J.. 2002; Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation. Metab Eng4:151–158
    [Google Scholar]
  32. van Gulik W. M., de Laat W. T., Vinke J. L., Heijnen J. J.. 2000; Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng68:602–618
    [Google Scholar]
  33. Veenstra A. E., van Solingen P., Bovenberg R. A. L., van der Voort L. H. M.. 1991; Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. J Biotechnol17:81–90
    [Google Scholar]
  34. Villas-Bôas S. G., Moxley J. F., Akesson M., Stephanopoulos G., Nielsen J.. 2005; High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J388:669–677
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010017-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010017-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error