1887

Abstract

Mycobacteriophage Tweety is a newly isolated phage of . It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative site has been identified within a short intergenic region immediately upstream of . This Tweety cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNA gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008904-0
2007-08-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2711.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008904-0&mimeType=html&fmt=ahah

References

  1. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R. Jr. 1994; inhA , a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis . Science263:227–230
    [Google Scholar]
  2. Barsom E. K., Hatfull G. F.. 1996; Characterization of Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol Microbiol21:159–170
    [Google Scholar]
  3. Bastin D. A., Lord A., Verma N. K.. 1997; Cloning and analysis of the glucosyl transferase gene encoding type I antigen in Shigella flexneri . FEMS Microbiol Lett156:133–139
    [Google Scholar]
  4. Bibb L. A., Hatfull G. F.. 2002; Integration and excision of the Mycobacterium tuberculosis prophage-like element, φ Rv1. Mol Microbiol45:1515–1526
    [Google Scholar]
  5. Bibb L. A., Hancox M. I., Hatfull G. F.. 2005; Integration and excision by the large serine recombinase φ Rv1 integrase. Mol Microbiol55:1896–1910
    [Google Scholar]
  6. Brown K. L., Sarkis G. J., Wadsworth C., Hatfull G. F.. 1997; Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J16:5914–5921
    [Google Scholar]
  7. Cianciotto N., Serwold-Davis T., Groman N., Ratti G., Rappuoli R.. 1990; DNA sequence homology between att B-related sites of Corynebacterium diphtheriae , Corynebacterium ulcerans , Corynebacterium glutamicum , and the attP site of γ -corynephage. FEMS Microbiol Lett54:299–301
    [Google Scholar]
  8. Desplats C., Krisch H. M.. 2003; The diversity and evolution of the T4-type bacteriophages. Res Microbiol154:259–267
    [Google Scholar]
  9. Donnelly-Wu M. K., Jacobs W. R. Jr, Hatfull G. F.. 1993; Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol7:407–417
    [Google Scholar]
  10. Ford M. E., Sarkis G. J., Belanger A. E., Hendrix R. W., Hatfull G. F.. 1998; Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol279:143–164
    [Google Scholar]
  11. Freitas-Vieira A., Anes E., Moniz-Pereira J.. 1998; The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology144:3397–3406
    [Google Scholar]
  12. Hatfull G. F., Jacobs W. R. Jr. 2004; Mycobacteriophages and tuberculosis. In Tuberculosis pp203–218 Edited by Eisenach K., Cole S. T., McMurray D.. Washington, DC: American Society for Microbiology;
  13. Hatfull G. F.. 2006; Mycobacteriophages. In The Bacteriophages pp602–620 Edited by Calendar. New York, NY: Oxford University Press;
  14. Hatfull G. F., Sarkis G. J.. 1993; DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol7:395–405
    [Google Scholar]
  15. Hatfull G. F., Pedulla M. L., Jacobs-Sera D., Cichon P. M., Foley A., Ford M. E., Gonda R. M., Houtz J. M., Hryckowian A. J.. other authors 2006; Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genetics2:e92
    [Google Scholar]
  16. Hendrix R. W., Duda R. L.. 1992; Bacteriophage lambda PaPa: not the mother of all lambda phages. Science258:1145–1148
    [Google Scholar]
  17. Jacobs W. R. Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R.. 1991; Genetic systems for mycobacteria. Methods Enzymol204:537–555
    [Google Scholar]
  18. Jain S., Hatfull G. F.. 2000; Transcriptional regulation and immunity in mycobacteriophage Bxb1. Mol Microbiol38:971–985
    [Google Scholar]
  19. Katsura I., Hendrix R. W.. 1984; Length determination in bacteriophage lambda tails. Cell39:691–698
    [Google Scholar]
  20. Kim A. I., Ghosh P., Aaron M. A., Bibb L. A., Jain S., Hatfull G. F.. 2003; Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol50:463–473
    [Google Scholar]
  21. Lee M. H., Pascopella L., Jacobs W. R. Jr, Hatfull G. F.. 1991; Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis , Mycobacterium tuberculosis , and bacille Calmette-Guerin. Proc Natl Acad Sci U S A88:3111–3115
    [Google Scholar]
  22. Leiman P. G., Shneider M. M., Mesyanzhinov V. V., Rossmann M. G.. 2006; Evolution of bacteriophage tails: structure of T4 gene product 10. J Mol Biol358:912–921
    [Google Scholar]
  23. Lewis J. A., Hatfull G. F.. 2000; Identification and characterization of mycobacteriophage L5 excisionase. Mol Microbiol35:350–360
    [Google Scholar]
  24. Lewis J. A., Hatfull G. F.. 2001; Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res29:2205–2216
    [Google Scholar]
  25. Liu M., Deora R., Doulatov S. R., Gingery M., Eiserling F. A., Preston A., Maskell D. J., Simons R. W., Cotter P. A.. other authors 2002; Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science295:2091–2094
    [Google Scholar]
  26. Liu M., Gingery M., Doulatov S. R., Liu Y., Hodes A., Baker S., Davis P., Simmonds M., Churcher C.. other authors 2004; Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol186:1503–1517
    [Google Scholar]
  27. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R. Jr, Hatfull G. F.. 2005; GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell123:861–873
    [Google Scholar]
  28. Parish T., Lewis J., Stoker N. G.. 2001; Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis ( Edinb ) 81359–364
    [Google Scholar]
  29. Pashley C. A., Parish T.. 2003; Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis . FEMS Microbiol Lett229:211–215
    [Google Scholar]
  30. Pedulla M. L., Ford M. E., Houtz J. M., Karthikeyan T., Wadsworth C., Lewis J. A., Jacobs-Sera D., Falbo J., Gross J.. other authors 2003; Origins of highly mosaic mycobacteriophage genomes. Cell113:171–182
    [Google Scholar]
  31. Peña C. E., Lee M. H., Pedulla M. L., Hatfull G. F.. 1997; Characterization of the mycobacteriophage L5 attachment site, attP. J Mol Biol266:76–92
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  33. Sarkis G. J., Hatfull G. F.. 1998; Mycobacteriophages. Methods Mol Biol101:145–173
    [Google Scholar]
  34. Saviola B., Bishai W. R.. 2004; Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res32:e11
    [Google Scholar]
  35. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol4:1911–1919
    [Google Scholar]
  36. Sonnhammer E. L., Durbin R.. 1995; A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene167:GC1–GC10
    [Google Scholar]
  37. Springer B., Sander P., Sedlacek L., Ellrott K., Bottger E. C.. 2001; Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int J Med Microbiol290:669–675
    [Google Scholar]
  38. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H.. other authors 1991; New use of BCG for recombinant vaccines. Nature351:456–460
    [Google Scholar]
  39. Tompa P.. 2003; Intrinsically unstructured proteins evolve by repeat expansion. Bioessays25:847–855
    [Google Scholar]
  40. van Kessel J. C., Hatfull G. F.. 2007; Recombineering in Mycobacterium tuberculosis . Nat Methods4:147–152
    [Google Scholar]
  41. Vultos T. D., Mederle I., Abadie V., Pimentel M., Moniz-Pereira J., Gicquel B., Reyrat J. M., Winter N.. 2006; Modification of the mycobacteriophage Ms6 attP core allows the integration of multiple vectors into different tRNAala T-loops in slow- and fast-growing mycobacteria. BMC Mol Biol7:47
    [Google Scholar]
  42. Xu J., Hendrix R. W., Duda R. L.. 2004; Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell16:11–21
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008904-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008904-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error