1887

Abstract

The phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) catalyses the transport of carbohydrates by coupling carbohydrate translocation and phosphorylation. In R, the genes and encode general components of the PTS, and genes and each encode fructose-, sucrose- and glucose-specific components of the PTS, respectively. In this study, we examined the mRNA levels of the genes in the presence or absence of PTS sugars. Glucose elevated the expression of and genes, whereas fructose and sucrose induced the expression of all the genes examined, i.e. - - - and -. We determined the transcriptional start sites of the genes and found that these promoters were activated in the presence of fructose. Disruption of , which is a deoxyribonucleoside repressor (DeoR)-type transcriptional regulator co-transcribed with , resulted in enhanced induction of the operon, , and expression in response to fructose, indicating that FruR attenuates the induction of , and by fructose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008862-0
2008-01-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/264.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008862-0&mimeType=html&fmt=ahah

References

  1. Barrière C., Veiga-da-Cunha M., Pons N., Guédon E., van Hijum S. A., Kok J., Kuipers O. P., Ehrlich D. S., Renault P. 2005; Fructose utilization in Lactococcus lactis as a model for low-GC Gram-positive bacteria, its regulator, signal, and DNA-binding site. J Bacteriol 187:3752–3761
    [Google Scholar]
  2. De Reuse H., Danchin A. 1988; The ptsH, ptsI , and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system, a complex operon with several modes of transcription. J Bacteriol 170:3827–3837
    [Google Scholar]
  3. Deutscher J., Francke C., Postma P. W. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031
    [Google Scholar]
  4. Dominguez H., Lindley N. D. 1996; Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62:3878–3880
    [Google Scholar]
  5. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J.-L., Cocaign-Bousquet M., Lindley N. D. 1998; Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102
    [Google Scholar]
  6. Engels V., Wendisch V. F. 2007; The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum . J Bacteriol 189:2955–2966
    [Google Scholar]
  7. Gaurivaud P., Laigret F., Garnier M., Bove J. M. 2001; Characterization of FruR as a putative activator of the fructose operon of Spiroplasma citri . FEMS Microbiol Lett 198:73–78
    [Google Scholar]
  8. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J. 2003; Acetate metabolism and its regulation in Corynebacterium glutamicum . J Biotechnol 104:99–122
    [Google Scholar]
  9. Ikeda M. 2003; Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35
    [Google Scholar]
  10. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H. 2004a; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196
    [Google Scholar]
  11. Inui M., Kawaguchi H., Murakami S., Vertès A. A., Yukawa H. 2004b; Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254
    [Google Scholar]
  12. Inui M., Suda M., Okino S., Nonaka H., Puskas G. H., Vertes A. A., Yukawa H. 2007; Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504
    [Google Scholar]
  13. Kelle R., Hermann T., Bathe B. 2005; l-Lysine production. In Handbook of Corynebacterium glutamicum pp 465–488 Edited by Eggeling L. Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  14. Kiefer P., Heinzle E., Zelder O., Wittmann C. 2004; Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239
    [Google Scholar]
  15. Kim S. Y., Nam T. W., Shin D., Koo B. M., Seok Y. J., Ryu S. 1999; Purification of Mlc and analysis of its effects on the pts expression in Escherichia coli . J Biol Chem 274:25398–25402
    [Google Scholar]
  16. Kinoshita S., Udaka S., Shimono M. 1957; Studies on the amino acid fermentation. I. Production of . l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205
    [Google Scholar]
  17. Kotrba P., Inui M., Yukawa H. 2001a; Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92:502–517
    [Google Scholar]
  18. Kotrba P., Inui M., Yukawa H. 2001b; The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum . Biochem Biophys Res Commun 289:1307–1313
    [Google Scholar]
  19. Kotrba P., Inui M., Yukawa H. 2003; A single V317A or V317M substitution in Enzyme II of a newly identified β -glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580
    [Google Scholar]
  20. Loo C. Y., Mitrakul K. I., Voss B., Hughes C. V., Ganeshkumar N. 2003; Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol 185:6241–6254
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  22. Moon M. W., Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., Lee J. K. 2005; Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266
    [Google Scholar]
  23. Mori M., Shiio I. 1987; Phosphoenolpyruvate, sugar phosphotransferase systems and sugar metabolism in Brevibacterium flavum . Agric Biol Chem 51:2671–2678
    [Google Scholar]
  24. Nakata K., Inui M., Kos P. B., Vertès A. A., Yukawa H. 2003; Vector for the genetic engineering of Corynebacteria. In Fermentation Biotechnology , ACS Symposium Series vol 862 pp 175–191 Edited by Saha B. C. Washington, DC: American Chemical Society;
    [Google Scholar]
  25. Nothaft H., Parche S., Kamionka A., Titgemeyer F. 2003; In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor . J Bacteriol 185:929–937
    [Google Scholar]
  26. Okino S., Inui M., Yukawa H. 2005; Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480
    [Google Scholar]
  27. Parche S., Burkovski A., Sprenger G. A., Weil B., Kramer R., Titgemeyer F. 2001a; Corynebacterium glutamicum , a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428
    [Google Scholar]
  28. Parche S., Thomae A. W., Schlicht M., Titgemeyer F. 2001b; Corynebacterium diphtheriae , a PTS view to the genome. J Mol Microbiol Biotechnol 3:415–422
    [Google Scholar]
  29. Patek M., Nesvera J., Guyonvarch A., Reyes O., Leblon G. 2003; Promoters of Corynebacterium glutamicum . J Biotechnol 104:311–323
    [Google Scholar]
  30. Plumbridge J. 1999; Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli . Mol Microbiol 33:260–273
    [Google Scholar]
  31. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate, carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  32. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65–78
    [Google Scholar]
  33. Suzuki N., Okai N., Nonaka H., Tsuge Y., Inui M., Yukawa H. 2006; High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755
    [Google Scholar]
  34. Tanaka Y., Kimata K., Inada T., Tagami H., Aiba H. 1999; Negative regulation of the pts operon by Mlc: mechanism underlying glucose induction in Escherichia coli . Genes Cells 4:391–399
    [Google Scholar]
  35. Vadeboncoeur C., Frenette M., Lortie L. A. 2000; Regulation of the pts operon in low G+C Gram-positive bacteria. J Mol Microbiol Biotechnol 2:483–490
    [Google Scholar]
  36. Viana R., Monedero V., Dossonnet V., Vadeboncoeur C., Perez-Martinez G., Deutscher J. 2000; Enzyme I and HPr from Lactobacillus casei , their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570–584
    [Google Scholar]
  37. Yokota A., Lindley N. D. 2005; Central metabolism, sugar uptake and conversion. In Handbook of Corynebacterium glutamicum pp 215–240 Edited by Eggeling L. Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  38. Yukawa H., Omumasaba C. A., Nonaka H., Kos P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J. other authors 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2007/008862-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008862-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error