1887

Abstract

Butane monooxygenase (BMO) catalyses the oxidation of alkanes to alcohols in the alkane-utilizing bacterium ‘’. Incubation of alkane-grown ‘’ with butyrate or propionate led to irreversible time- and O-dependent loss of BMO activity. In contrast, BMO activity was unaffected by incubation with lactate or acetate. Chloramphenicol inhibited the synthesis of new BMO, but did not change the kinetics of propionate-dependent BMO inactivation, suggesting that the propionate effect was not simply due to it acting as a repressor of BMO transcription. BMO was protected from propionate-dependent inactivation by the presence of its natural substrate, butane. Although both the time and O dependency of propionate inactivation of BMO imply that propionate might be a suicide substrate, no evidence was obtained for BMO-dependent propionate consumption, or C labelling of BMO polypeptides by [2-C]propionate during inactivation. Propionate-dependent BMO inactivation was also explored in mutant strains of ‘’ containing single amino acid substitutions in the -subunit of the BMO hydroxylase. Propionate-dependent BMO inactivation in two mutant strains with amino acid substitutions close to the catalytic site differed from wild-type (one was more sensitive and the other less), providing further evidence that propionate-dependent inactivation involves interaction with the BMO catalytic site. A putative model is presented that might explain propionate-dependent inactivation of BMO when framed within the context of the catalytic cycle of the closely related enzyme, soluble methane monooxygenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008441-0
2007-11-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3722.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008441-0&mimeType=html&fmt=ahah

References

  1. Arp D. J.. 1999; Butane metabolism by butane-grown ‘ Pseudomonas butanovora’. Microbiology145:1173–1180
    [Google Scholar]
  2. Astier Y., Balendra S., Hill H. A., Smith T. J., Dalton H.. 2003; Cofactor-independent oxygenation reactions catalyzed by soluble methane monooxygenase at the surface of a modified gold electrode. Eur J Biochem270:539–544
    [Google Scholar]
  3. Brazeau B. J., Austin R. N., Tarr C., Groves J. T., Lipscomb J. D.. 2001; Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction. J Am Chem Soc123:11831–11837
    [Google Scholar]
  4. Cronan J. E. Jr, Subrahmanyam S.. 1998; FadR, transcriptional co-ordination of metabolic expediency. Mol Microbiol29:937–943
    [Google Scholar]
  5. Doughty D. M., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2005; Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium “ Pseudomonas butanovora”. Appl Environ Microbiol71:6054–6059
    [Google Scholar]
  6. Doughty D. M., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2006; Product repression of alkane monooxygenase expression in Pseudomonas butanovora. J Bacteriol188:2586–2592
    [Google Scholar]
  7. Dubbels B. L., Sayavedra-Soto L. A., Arp D. J.. 2007; Butane monooxygenase of ‘ Pseudomonas butanovora’: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology153:1808–1816
    [Google Scholar]
  8. Gornall A. G., Bardawill C. J., David M. M.. 1949; Determination of serum proteins by means of the biuret reaction. J Biol Chem177:751–766
    [Google Scholar]
  9. Green J., Prior S. D., Dalton H.. 1985; Copper ions as inhibitors of protein C of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur J Biochem153:137–144
    [Google Scholar]
  10. Guy J. E., Abreu I. A., Moche M., Lindqvist Y., Whittle E., Shanklin J.. 2006; A single mutation in the castor Δ9-18 : 0-desaturase changes reaction partitioning from desaturation to oxidase chemistry. Proc Natl Acad Sci U S A103:17220–17224
    [Google Scholar]
  11. Halsey K. H., Sayavedra-Soto L. A., Bottomley P. J., Arp D. J.. 2006; Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. J Bacteriol188:4962–4969
    [Google Scholar]
  12. Hamamura N., Storfa R. T., Semprini L., Arp D. J.. 1999; Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol65:4586–4593
    [Google Scholar]
  13. Heath R. J., Rock C. O.. 1996; Inhibition of beta-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J Biol Chem271:10996–11000
    [Google Scholar]
  14. Hyman M. R., Arp D. J.. 1992; 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem267:1534–1545
    [Google Scholar]
  15. Jahng D., Wood T. K.. 1996; Metal ions and chloramphenicol inhibition of soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol45:744–749
    [Google Scholar]
  16. Lee S. K., Fox B. G., Froland W. A., Lipscomb J. D., Münck E.. 1993a; A transient intermediate of the methane monooxygenase catalytic cycle containing a FeIV FeIV cluster. J Am Chem Soc115:6450–6451
    [Google Scholar]
  17. Lee S. K., Nesheim J. C., Lipscomb J. D.. 1993b; Transient intermediates of the methane monooxygenase catalytic cycle. J Biol Chem268:21569–21577
    [Google Scholar]
  18. Lee S. W., Keeney D. R., Lim D. H., Dispirito A. A., Semrau J. D.. 2006; Mixed pollutant degradation by Methylosinus trichosporium OB3b either soluble or particulate methane monooxygenase: can the tortoise beat the hare?. Appl Environ Microbiol72:7503–7509
    [Google Scholar]
  19. Lipscomb J. D.. 1994; Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol48:371–399
    [Google Scholar]
  20. Liu K. E., Valentine A. M., Qui D., Edmondson D. E., Appelman E. H., Spiro T. G., Lippard S. J.. 1995; Characterization of a diiron(III) peroxo intermediate in the reaction cycle of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath). J Am Chem Soc117:4997–4998
    [Google Scholar]
  21. Marrakchi H., Zhang Y. M., Rock C. O.. 2002; Mechanistic diversity and regulation of type II fatty acid synthesis. Biochem Soc Trans30:1050–1055
    [Google Scholar]
  22. Moche M., Shanklin J., Ghoshal A., Lindqvist Y.. 2003; Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme Δ9 stearoyl-acyl carrier protein desaturase, implications for oxygen activation and catalytic intermediates. J Biol Chem278:25072–25080
    [Google Scholar]
  23. Prior S. D., Dalton H.. 1985; Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol Lett29:105–109
    [Google Scholar]
  24. Rosenzweig A. C., Brandstetter H., Whittington D. A., Nordlund P., Lippard S. J., Frederick C. A.. 1997; Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins29:141–152
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Sayavedra-Soto L. A., Byrd C. M., Arp D. J.. 2001; Induction of butane consumption in Pseudomonas butanovora. Arch Microbiol176:114–120
    [Google Scholar]
  27. Sayavedra-Soto L. A., Doughty D. M., Kurth E. G., Bottomley P. J., Arp D. J.. 2005; Product and product-independent induction of butane oxidation in Pseudomonas butanovora. FEMS Microbiol Lett250:111–116
    [Google Scholar]
  28. Sazinsky M. H., Lippard S. J.. 2005; Product bound structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): protein motion in the alpha-subunit. J Am Chem Soc127:5814–5825
    [Google Scholar]
  29. Sluis M. K., Sayavedra-Soto L. A., Arp D. J.. 2002; Molecular analysis of the soluble butane monooxygenase from ‘ Pseudomonas butanovora’ . Microbiology148:3617–3629
    [Google Scholar]
  30. Smith T. J., Dalton H.. 2004; Biocatalysis by methane monooxygenase and its implications for the petroleum industry. In Petroleum Biotechnology, Developments and Perspectives pp177–192 Edited by Vazquez-Duhalt R., Qintero-Ramirez R. Amsterdam: Elsevier;
    [Google Scholar]
  31. Smith C. A., O'Reilly K. T., Hyman M. R.. 2003; Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5–C8 n-alkanes. Appl Environ Microbiol69:7385–7394
    [Google Scholar]
  32. Vangnai A. S., Arp D. J.. 2001; An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by ‘ Pseudomonas butanovora’. Microbiology147:745–756
    [Google Scholar]
  33. Whittenbury R., Phillips K. C., Wilkinson J. F.. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol61:205–218
    [Google Scholar]
  34. Zhang J., Lipscomb J. D.. 2006; Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation. Biochemistry45:1459–1469
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008441-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008441-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error