1887

Abstract

(−)-Epicatechin gallate (ECg), a component of green tea, sensitizes meticillin-resistant (MRSA) to -lactam antibiotics, promotes staphylococcal cell aggregation and increases cell-wall thickness. The potentiation of -lactam activity against MRSA by ECg was not due to decreased bacterial penicillin-binding protein (PBP) 2a expression or ECg binding to peptidoglycan. A 5–10 % reduction in peptidoglycan cross-linking was observed. Reduced cross-linking was insufficient to compromise the integrity of the cell wall and no evidence of PBP2a activity was detected in the muropeptide composition of ECg-grown cells. ECg increased the quantity of autolysins associated with the cell wall, even though the cells were less susceptible to Triton X-100-induced autolysis than cells grown in the absence of ECg. ECg promoted increased lysostaphin resistance that was not due to alteration of the pentaglycine cross-bridge configuration or inhibition of lysostaphin activity. Rather, decreased lysostaphin susceptibility was associated with structural changes to wall teichoic acid (WTA), an acid-labile component of peptidoglycan. ECg also promoted lipoteichoic acid (LTA) release from the cytoplasmic membrane. It is proposed that ECg reduces -lactam resistance in MRSA either by binding to PBPs at sites distinct from the penicillin-binding site or by intercalation into the cytoplasmic membrane, displacing LTA from the phospholipid palisade. Thus, ECg-mediated alterations to the physical nature of the bilayer will elicit structural changes to WTA that result in modulation of the cell-surface properties necessary to maintain the -lactam-resistant phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007807-0
2007-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2093.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007807-0&mimeType=html&fmt=ahah

References

  1. Appelbaum, P. C. ( 2006; ). The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin Microbiol Infect 12 (Suppl. 1), 16–23.
    [Google Scholar]
  2. Bera, A., Herbert, S., Jakob, A., Vollmer, W. & Götz, F. ( 2005; ). Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55, 778–787.
    [Google Scholar]
  3. Blanco, A. R., Sudano-Roccaro, A., Spoto, G. C., Nostro, A. & Rusciano, D. ( 2005; ). Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother 49, 4339–4343.[CrossRef]
    [Google Scholar]
  4. Boyle-Vavra, S., Carey, R. B. & Daum, R. S. ( 2001; ). Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. J Antimicrob Chemother 48, 617–625.[CrossRef]
    [Google Scholar]
  5. Caturla, N., Vera-Samper, E., Villalaín, J., Mateo, C. R. & Micol, V. ( 2003; ). The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic Biol Med 34, 648–662.[CrossRef]
    [Google Scholar]
  6. Centers for Disease Control ( 2002; ). Staphylococcus aureus resistant to vancomycin – United States, 2002. MMWR Morbid Mortal Wkly Rep 51, 565–567.
    [Google Scholar]
  7. Crisóstomo, M. I., Westh, H., Tomasz, A., Chung, M., Oliveira, D. C. & de Lencastre, H. ( 2001; ). The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc Natl Acad Sci U S A 98, 9865–9870.[CrossRef]
    [Google Scholar]
  8. de Jonge, B. L. M. & Tomasz, A. ( 1993; ). Abnormal peptidoglycan produced in a methicillin-resistant strain of Staphylococcus aureus grown in the presence of methicillin: functional role for penicillin-binding protein 2A in cell wall synthesis. Antimicrob Agents Chemother 37, 342–346.[CrossRef]
    [Google Scholar]
  9. de Jonge, B. L. M., de Lancastre, H. & Tomasz, T. ( 1991; ). Suppression of autolysis and cell wall turnover in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain. J Bacteriol 173, 1105–1110.
    [Google Scholar]
  10. Finan, J. E., Archer, G. L., Pucci, M. J. & Climo, M. W. ( 2001; ). Role of penicillin-binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45, 3070–3075.[CrossRef]
    [Google Scholar]
  11. Fournier, B. & Hooper, D. C. ( 2000; ). A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J Bacteriol 182, 3955–3964.[CrossRef]
    [Google Scholar]
  12. Hamilton-Miller, J. M. T. & Shah, S. ( 1999; ). Disorganization of cell division of methicillin-resistant Staphylococcus aureus by a component of tea (Camellia sinensis): a study by electron microscopy. FEMS Microbiol Lett 176, 463–469.[CrossRef]
    [Google Scholar]
  13. Hartman, B. J. & Tomasz, A. ( 1984; ). Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158, 513–516.
    [Google Scholar]
  14. Hashimoto, T., Kumazawa, S., Nanjo, F., Hara, Y. & Nakayama, T. ( 1999; ). Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci Biotechnol Biochem 63, 2252–2255.[CrossRef]
    [Google Scholar]
  15. Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T. & Tenover, F. C. ( 1997; ). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40, 135–136.[CrossRef]
    [Google Scholar]
  16. Kajiya, K., Kumazawa, S. & Nakayama, T. ( 2001; ). Steric effects on interaction of tea catechins with lipid bilayers. Biosci Biotechnol Biochem 65, 2638–2643.[CrossRef]
    [Google Scholar]
  17. Kajiya, K., Kumazawa, S. & Nakayama, T. ( 2002; ). Effects of external factors on the interaction of tea catechins with lipid bilayers. Biosci Biotechnol Biochem 66, 2330–2335.[CrossRef]
    [Google Scholar]
  18. Koehl, J. L., Muthaiyan, A., Jayaswal, R. K., Ehlert, K., Labischinski, H. & Wilkinson, B. ( 2004; ). Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 48, 3749–3757.[CrossRef]
    [Google Scholar]
  19. Leloir, L. F. & Cardini, C. E. ( 1957; ). Characterization of phosphorus compound by acid lability. Methods Enzymol 3, 840–850.
    [Google Scholar]
  20. Łęski, T. A. & Tomasz, A. ( 2005; ). Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4 and PBP2A. J Bacteriol 187, 1815–1824.[CrossRef]
    [Google Scholar]
  21. Miller, L. A., Ratnam, K. & Payne, D. J. ( 2001; ). Beta-lactamase-inhibitor combinations in the 21st century: current agents and new developments. Curr Opin Pharmacol 1, 451–458.[CrossRef]
    [Google Scholar]
  22. Ohta, K., Komatsuzawa, H., Sugai, M. & Suginaka, H. ( 2000; ). Triton X-100-induced lipoteichoic acid release is correlated with the methicillin resistance in Staphylococcus aureus. FEMS Microbiol Lett 182, 77–79.[CrossRef]
    [Google Scholar]
  23. Peschel, A., Vuong, C., Otto, M. & Götz, F. ( 2000; ). The d-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44, 2845–2847.[CrossRef]
    [Google Scholar]
  24. Pinho, M. G., de Lencastre, H. & Tomasz, A. ( 2000; ). Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J Bacteriol 182, 1074–1079.[CrossRef]
    [Google Scholar]
  25. Raychaudhuri, D. & Chatterjee, A. N. ( 1985; ). Use of resistant mutants to study the interaction of Triton X-100 with Staphylococcus aureus. J Bacteriol 164, 1337–1349.
    [Google Scholar]
  26. Raynor, R. H., Scott, D. F. & Best, G. K. ( 1979; ). Oxacillin-induced lysis of Staphylococcus aureus. Antimicrob Agents Chemother 16, 134–140.[CrossRef]
    [Google Scholar]
  27. Roos, M., Pittenauer, E., Schmid, E., Beyer, M., Reinike, B., Allmaier, G. & Labischinski, H. ( 1998; ). Improved high-performance liquid chromatographic separation of peptidoglycan isolated from various Staphylococcus aureus strains for mass spectrometric characterization. J Chromatogr B Biomed Sci Appl 705, 183–192.[CrossRef]
    [Google Scholar]
  28. Shiota, S., Shimizu, M., Mizushima, T., Ito, H., Hatano, T., Yoshida, T. & Tsuchiya, T. ( 1999; ). Marked reduction in the minimum inhibitory concentration (MIC) of beta-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis). Biol Pharm Bull 22, 1388–1390.[CrossRef]
    [Google Scholar]
  29. Shirai, C., Sugai, M., Komatsuzawa, H., Ohta, K., Yamakido, M. & Suginaka, H. ( 1998; ). A triazine dye, cibacron blue F3GA, decreases oxacillin resistance levels in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 42, 1278–1280.
    [Google Scholar]
  30. Sieradzki, K. & Tomasz, A. ( 1996; ). A highly vancomycin-resistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol Lett 142, 161–166.[CrossRef]
    [Google Scholar]
  31. Sieradzki, K. & Tomasz, A. ( 2003; ). Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185, 7103–7110.[CrossRef]
    [Google Scholar]
  32. Sieradzki, K., Pinho, M. G. & Tomasz, A. ( 1999; ). Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J Biol Chem 274, 18942–18946.[CrossRef]
    [Google Scholar]
  33. Stapleton, P. D. & Taylor, P. W. ( 2002; ). Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 85, 57–72.[CrossRef]
    [Google Scholar]
  34. Stapleton, P. D., Shah, S., Anderson, J. C., Hara, Y., Hamilton-Miller, J. M. T. & Taylor, P. W. ( 2004; ). Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 23, 462–467.[CrossRef]
    [Google Scholar]
  35. Stapleton, P. D., Shah, S., Hara, Y. & Taylor, P. W. ( 2006; ). Potentiation of catechin gallate-mediated sensitization of Staphylococcus aureus to oxacillin by nongalloylated catechins. Antimicrob Agents Chemother 50, 752–755.[CrossRef]
    [Google Scholar]
  36. Stranden, A. M., Ehlert, K., Labischinski, H. & Berger-Bächi, B. ( 1997; ). Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 179, 9–16.
    [Google Scholar]
  37. Sugai, M., Akiyama, T., Komatsuzawa, H., Miyake, Y. & Suginaka, H. ( 1990; ). Characterization of sodium dodecyl sulfate-stable Staphylococcus aureus bacteriolytic enzymes by polyacrylamide gel electrophoresis. J Bacteriol 172, 6494–6498.
    [Google Scholar]
  38. Sugai, M., Komatsuzawa, H., Akiyama, T., Hong, Y.-M., Oshida, T., Miyake, Y., Yamaguchi, T. & Suginaka, H. ( 1995; ). Identification of endo-β-N-acetylglucosaminidase and N-acetylmuramyl-l-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. J Bacteriol 177, 1491–1496.
    [Google Scholar]
  39. Suzuki, J., Komatsuzawa, H., Sugai, M., Ohta, K., Kozai, K., Nagasaka, N. & Suginaka, H. ( 1997; ). Effects of various types of triton X on the susceptibilities of methicillin-resistant staphylococci to oxacillin. FEMS Microbiol Lett 153, 327–331.[CrossRef]
    [Google Scholar]
  40. Taylor, P. W., Stapleton, P. D. & Paul Luzio, J. ( 2002; ). New ways to treat bacterial infections. Drug Discov Today 7, 1086–1091.[CrossRef]
    [Google Scholar]
  41. van Langevelde, P., van Dissel, J. T., Ravensbergen, E., Applemelk, B. J., Schrijver, I. A. & Groeneveld, P. H. P. ( 1998; ). Antibiotic-induced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: quantitative measurements and biological reactivities. Antimicrob Agents Chemother 42, 3073–3078.
    [Google Scholar]
  42. Wootton, M., Bennett, P. M., MacGowan, A. P. & Walsh, T. R. ( 2005; ). Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA) and GISA strains. J Antimicrob Chemother 56, 944–947.[CrossRef]
    [Google Scholar]
  43. Yam, T. S., Hamilton-Miller, J. M. T. & Shah, S. ( 1998; ). The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2′ synthesis, and β-lactamase production in Staphylococcus aureus. J Antimicrob Chemother 42, 211–216.[CrossRef]
    [Google Scholar]
  44. Zhao, W.-H., Hu, Z.-Q., Okubo, S., Hara, Y. & Shimamura, T. ( 2001; ). Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45, 1737–1742.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007807-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error