1887

Abstract

ClpB is a member of the protein-disaggregating chaperone machinery belonging to the AAA+ superfamily. This paper describes a new gene from the halophilic methanoarchaeon , which has not been reported previously in Archaea. The partial sequence of was identified from the investigation of the salt-stress response of by differential-display RT-PCR (DDRT-PCR). Furthermore, the complete sequence (2610 nt) and its upstream genes encoding the type I chaperonin GroEL/ES were obtained through inverse PCR, Southern hybridization and sequencing. The G+C ratio of is 49.6 mol%. The predicted ClpB polypeptide contains 869 aa and possesses a long central domain and a predicted distinctly discontinuous coiled-coil motif separating two nucleotide-binding domains (NBD1 and NBD2). NBD1 has a single Walker A and two Walker B motifs and NBD2 has only one of each Walker motif, a characteristic of HSP100 proteins. Two repeated Clp amino-terminal domain motifs (ClpN) were identified in ClpB. The putative amino acid sequence shared 75.6 % identity with the predicted homologue annotated as ATPase AAA-2 of DSM 6242. Preliminary phylogenetic analysis clustered ClpB (ClpB) with the low G+C Gram-positive bacteria. Stress response analysis of by Northern blotting showed up to 1.5-fold increased transcription levels in response to both salt up-shock (from 2.1 to 3.1 M NaCl) and down-shock (from 2.1 to 0.9 M NaCl). Both and transcript levels increased when the temperature was shifted from 37 °C to 55 °C. Under heat stress transcription was repressed by the addition of the osmolyte betaine (1 mM). In conclusion, a novel AAA+ chaperone gene from a halophilic methanogen that responded to the fluctuations in temperature, salt concentration and betaine has been identified and analysed for the first time.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007633-0
2007-08-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2572.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007633-0&mimeType=html&fmt=ahah

References

  1. Albers S.-V., van de Vossenberg J. L. C. M., Driessen A. J. M., Konings W. N. 2000; Adaptations of the archaeal cell membrane to heat stress. Front Biosci 5:D813–D820
    [Google Scholar]
  2. Balch W. E., Fox G. E., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Barnett M. E., Zolkiewska A., Zolkiewski M. 2000; Structure and activity of ClpB from Escherichia coli : role of the amino-and carboxyl terminal domains. J Biol Chem 275:37565–37571
    [Google Scholar]
  4. Ben-Zvi A. P., Goloubinoff P. 2001; Mechanism of disaggregation and refolding of stable protein aggregates by molecular chaperone. J Struct Biol 135:84–93
    [Google Scholar]
  5. Boone D. R., Mathrani I. M., Liu Y., Menaia J. A. G. F., Mah R. A., Boone J. E. 1993; Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus . Int J Syst Evol Microbiol 43:430–437
    [Google Scholar]
  6. Boonyaratanakornkit B. B., Simpson A. J., Whitehead T. A., Fraser C. M., El-Sayed N. M. A., Clark D. S. 2005; Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ Microbiol 7:789–797
    [Google Scholar]
  7. Cannio R., Fiorentino G., Morana A., Rossi M., Bartolucci S. 2000; Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. Front Biosci 5:D768–D779
    [Google Scholar]
  8. Celerin M., Gilpin A. A., Schisler N. J., Ivanov A. G., Miskiewicz E., Krol M., Laudenbach D. E. 1998; ClpB in a cyanobacterium: predicted structure, phylogenetic relationships, and regulation by light and temperature. J Bacteriol 180:5173–5182
    [Google Scholar]
  9. Conway de Macario E., Maeder D. L., Macario A. J. L. 2003; Breaking the mould: archaea with all four chaperoning systems. Biochem Biophys Res Commun 301:811–812
    [Google Scholar]
  10. Deppenmeier U., Johann A., Hartsch T., Merkl R., Schmitz R. A., Martinez-Arias R., Henne A., Wiezer A., Bäumer S. other authors 2002; The genome of Methanosarcina mazei : evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461
    [Google Scholar]
  11. Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. 2001; Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591
    [Google Scholar]
  12. Diamant S., Rosenthal D., Azem A., Eliahu N., Ben-Zvi A. P., Goloubinoff P. 2003; Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol 49:401–410
    [Google Scholar]
  13. Dougan D. A., Mogk A., Zeth K., Turgay K., Bukau B. 2002; AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 529:6–10
    [Google Scholar]
  14. Galagan J. E., Nusbaum C., Roy A., Endrizzi M. G., Macdonald P., FitzHugh W., Calvo S., Engels R., Smirnov S. other authors 2002; The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542
    [Google Scholar]
  15. Jarrell K. F., Faguy D., Hebert A. M., Kalmokoff M. L. 1992; A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria. Can J Microbiol 38:65–68
    [Google Scholar]
  16. Johnson J. L. 1985; DNA reassociation and DNA hybridization of bacterial nucleic acids. Methods Microbiol 18:33–74
    [Google Scholar]
  17. Kagawa H. K., Osipiuk J., Maltsev N., Overbeek R., Quaite-Randall E., Joachimiak A., Trent J. D. 1995; The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae . J Mol Biol 253:712–725
    [Google Scholar]
  18. Klunker D., Haas B., Hirtreiter A., Figueiredo L., Naylor G. D., Pfeifer J., Müller V., Deppenmeier U., Gottschalk G. other authors 2003; Coexistence of Group I and Group II chaperonins in the Archaeon Methanosarcina mazei . J Biol Chem 278:33256–33267
    [Google Scholar]
  19. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163
    [Google Scholar]
  20. Lai M.-C., Sowers K. R., Robertson D. E., Roberts M. F., Gunsalus R. P. 1991; Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358
    [Google Scholar]
  21. Lai M.-C., Yang D.-R., Cuang M.-J. 1999; Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis . Appl Environ Microbiol 65:828–833
    [Google Scholar]
  22. Lai M.-C., Hong T.-Y., Gunsalus R. P. 2000; Glycine betaine transport in halophilic methanogenic archaea, Methanohalophilus portucalensis . J Bacteriol 182:5020–5024
    [Google Scholar]
  23. Lai M.-C., Chen S.-C., Shu C.-M., Chiou M.-S., Wang C.-C., Chuang M.-J., Hong T.-Y., Liu C.-C., Lai L.-J., Hua J. J. 2002; Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int J Syst Evol Microbiol 52:1799–1806
    [Google Scholar]
  24. Lai M.-C., Lin C.-C., Yu P.-H., Huang Y.-F., Chen S.-C. 2004; Methanocalculus chunghsingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int J Syst Evol Microbiol 54:183–189
    [Google Scholar]
  25. Lai M.-C., Wang C.-C., Chuang M.-J., Wu Y.-C., Lee Y.-C. 2006; The effects of substrate and potassium on betaine synthesizing enzyme glycine sarcosine dimethylglycine N -methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis . Res Microbiol 157:948–955
    [Google Scholar]
  26. Laksanalamai P., Whitehead T. A., Robb F. T. 2004; Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2:315–324
    [Google Scholar]
  27. Lee S., Tsai F. T. F. 2005; Molecular chaperones in protein quality control. J Biochem Mol Biol 38:259–265
    [Google Scholar]
  28. Lee S., Sowa M. E., Watanabe Y.-H., Sigler P. B., Chiu W., Yoshida M., Tsai F. T. F. 2003; The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229–240
    [Google Scholar]
  29. Lee S., Sowa M. E., Choi J.-M., Tsai F. T. F. 2004; The ClpB/Hsp104 molecular chaperone – a protein disaggregating machine. J Struct Biol 146:99–105
    [Google Scholar]
  30. Lupas A. 1996; Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382
    [Google Scholar]
  31. Macario A. J. L., Lange M., Ahring B. K., Conway de Macario E. 1999; Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–967
    [Google Scholar]
  32. Macario A. J. L., Malz M., Conway de Macario E. 2004; Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front Biosci 9:1318–1332
    [Google Scholar]
  33. Macario A. J. L., Brocchieri L., Shenoy A. R., Conway de Macario E. 2006; Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70 ( dnaK ) gene. J Mol Evol 63:74–86
    [Google Scholar]
  34. Martin J., Gruber M., Lupas A. N. 2004; Coiled coils meet the chaperone world. Trends Biochem Sci 29:455–458
    [Google Scholar]
  35. Maruyama T., Furutani M. 2000; Archaeal peptidyl prolyl cis-trans isomerases (PPIases). Front Biosci 5:D821–D836
    [Google Scholar]
  36. Mathrani I. M., Boone D. R. 1985; Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50:140–143
    [Google Scholar]
  37. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. 1999; AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43
    [Google Scholar]
  38. Ogura T., Wilkinson A. J. 2001; AAA+ superfamily ATPases: common structure – diverse function. Genes Cells 6:575–597
    [Google Scholar]
  39. Osipiuk J., Joachimiak A. 1997; Cloning, sequencing, and expression of dnaK -operon proteins from the thermophilic bacterium Thermus thermophilus . Biochim Biophys Acta 1353:253–265
    [Google Scholar]
  40. Quaite-Randall E., Trent J. D., Josephs R., Joachimiak A. 1995; Conformational cycle of the archaeosome, a TCP1-like chaperonin from Sulfolobus shibatae . J Biol Chem 270:28818–28823
    [Google Scholar]
  41. Queitsch C., Hong S. W., Vierling E., Lindquist S. 2000; Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis . Plant Cell 12:479–492
    [Google Scholar]
  42. Roberts M. F. 2000; Osmoadaptation and osmoregulation in archaea. Front Biosci 5:D796–D812
    [Google Scholar]
  43. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  44. Sanchez Y., Lindquist S. 1990; Hsp104 required for induced thermotolerance. Science 248:1112–1115
    [Google Scholar]
  45. Saunders N. F. W., Thomas T., Curmi P. M. G., Mattick J. S., Kuczek E., Slade R., Davis J., Franzmann P. D., Boone D. other authors 2003; Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii . Genome Res 13:1580–1588
    [Google Scholar]
  46. Scandurra R., Consalvi V., Chiaraluce R., Politi L., Engel P. C. 2000; Protein stability in extremophilic archaea. Front Biosci 5:D787–D795
    [Google Scholar]
  47. Schirmer E. C., Glover J. R., Singer M. A., Lindquist S. 1996; HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296
    [Google Scholar]
  48. Schlieker C., Weibezahn J., Patzelt H., Tessarz P., Strub C., Zeth K., Erbse A., Schneider-Mergener J., Chin J. W. other authors 2004; Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 11:607–615
    [Google Scholar]
  49. Singh S. K., Grimaud R., Hoskins J. R., Wickner S., Maurizi M. R. 2000; Unfolding and internalization of proteins by ATP-dependent protease ClpXP and ClpAP. Proc Natl Acad Sci U S A 97:8898–8903
    [Google Scholar]
  50. Singh S. K., Rozycki J., Ortega J., Ishikawa T., Lo J., Steven A. C., Maurizi M. R. 2001; Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J Biol Chem 276:29420–29429
    [Google Scholar]
  51. Squires C., Squires C. L. 1992; The Clp proteins: proteolysis regulators or molecular chaperones?. J Bacteriol 174:1081–1085
    [Google Scholar]
  52. Squires C. L., Pedersen S., Ross B. M., Squires C. 1991; ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol 173:4254–4262
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  54. Waldmann T., Lupas A. N., Kellermann J., Peters J., Baumeister W. 1995; Primary structure of the thermosome from Thermoplasma acidophilum . Biol Chem Hoppe Seyler 376:119–126
    [Google Scholar]
  55. Woo K. M., Kim K. I., Goldberg A. L., Ha D. B., Chung C. H. 1992; The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J Biol Chem 267:20429–20434
    [Google Scholar]
  56. Zolkiewski M. 1999; ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli . J Biol Chem 274:28083–28086
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007633-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007633-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error