1887

Abstract

is the causative agent of cholera, which continues to be a major public health concern in Asia, Africa and Latin America. The bacterium can persist outside the human host and alternates between planktonic and biofilm community lifestyles. Transition between the different lifestyles is mediated by multiple signal transduction pathways including quorum sensing. Expression of the Zn-metalloprotease haemagglutinin (HA)/protease is subject to a dual regulation which involves the quorum-sensing regulator HapR and the cAMP receptor protein. In a previous study, we observed that a mutant defective in the cAMP-receptor protein (CRP) expressed lower levels of HapR. To further investigate the role of CRP in modulating HapR and other signal transduction pathways, we performed global gene expression profiling of a Δ mutant of El Tor biotype . Here we show that CRP is required for the biosynthesis of cholera autoinducer 1 (CAI-1) and affects the expression of multiple HapR-regulated genes. As expected, the Δ mutant produced more cholera toxin and enhanced biofilm. Expression of flagellar genes, reported to be affected in Δ mutants, was diminished in the Δ mutant. However, an epistasis analysis indicated that cAMP–CRP affects motility by a mechanism independent of HapR. Inactivation of inhibited the expression of multiple genes reported to be strongly induced and to affect the ability of to colonize the small intestine and cause disease. These genes included , and encoding outer-membrane proteins, the alternative sigma factor required for intestinal colonization, and genes involved in anaerobic energy metabolism. Our results indicate that CRP plays a crucial role in the life cycle by affecting quorum sensing and multiple genes required for survival of in the human host and the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006668-0
2007-09-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2964.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006668-0&mimeType=html&fmt=ahah

References

  1. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E. H., Iglewski B. H. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928–3935
    [Google Scholar]
  2. Bejerano-Sagie M., Xavier K. B. 2007; The role of small RNAs in quorum sensing. Curr Opin Microbiol 10:189–198
    [Google Scholar]
  3. Benitez J. A., Garcia L., Silva A. J., Garcia H., Fando R., Cedre B., Perez A., Campos J., Rodriguez B. L. other authors 1999; Preliminary assessment of the safety and immunogenicity of a new CTXΦ-negative hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infect Immun 67:539–545
    [Google Scholar]
  4. Benitez J. A., Silva A. J., Finkelstein R. A. 2001; Environmental signals controlling production of hemagglutinin/protease in Vibrio cholerae. Infect Immun 69:6549–6553
    [Google Scholar]
  5. Breitling R., Armengaud P., Amtmann A., Herzyk P. 2004; Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92
    [Google Scholar]
  6. Brückner R., Titgemeyer F. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148
    [Google Scholar]
  7. Chatterjee J., Miyamoto C. M., Zouzoulas A., Franz Land B., Skouris N., Meighen E. A. 2002; MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence. Mol Microbiol 46:101–111
    [Google Scholar]
  8. Deutscher J., Francke C., Postma P. W. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolisms in bacteria. Microbiol Mol Biol Rev 70:939–1031
    [Google Scholar]
  9. DiRita V. J., Parsot C., Jander G., Mekalanos J. J. 1991; Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 88:5403–5407
    [Google Scholar]
  10. Donnenberg M. S., Kaper J. B. 1991; Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317
    [Google Scholar]
  11. Dunlap P. V., Greenberg E. P. 1988; Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-LuxR protein regulatory circuit. J Bacteriol 170:4040–4046
    [Google Scholar]
  12. Finkelstein R. A., Boesman-Finkelstein M., Chang Y., Häse C. C. 1992; Vibrio cholerae hemagglutinin/protease, colonial variation, virulence and detachment. Infect Immun 60:472–478
    [Google Scholar]
  13. Ganguly U., Greennough W. B. III 1975; Adenosine 3′5′-cyclic monophosphate in Vibrio cholerae. Infect Immun 11:343–349
    [Google Scholar]
  14. Hammer B. K., Bassler B. L. 2003; Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–114
    [Google Scholar]
  15. Häse C. C., Finkelstein R. A. 1991; Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol 173:3311–3317
    [Google Scholar]
  16. Häse C. C., Mekalanos J. J. 1998; TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 95:730–734
    [Google Scholar]
  17. Haugo A. J., Watnick P. I. 2002; Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 45:471–483
    [Google Scholar]
  18. Henke J. M., Bassler B. L. 2004; Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6914
    [Google Scholar]
  19. Iwanaga M., Yamamoto K., Higa N., Ichinose Y., Nakasone N., Tanabe M. 1986; Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol Immunol 30:1075–1083
    [Google Scholar]
  20. Jeong H. S., Lee M. H., Lee K.-H., Park S.-J., Choi S. H. 2003; SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in synergistic manner. J Biol Chem 278:45072–45081
    [Google Scholar]
  21. Jobling M. G., Holmes R. K. 1997; Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol 26:1023–1034
    [Google Scholar]
  22. Joelsson A., Liu Z., Zhu J. 2006; Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of V. cholerae. Infect Immun 74:1141–1147
    [Google Scholar]
  23. Kazmierczak M. J., Wiedmann M., Boor K. J. 2005; Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69:527–543
    [Google Scholar]
  24. Klose K. E., Mekalanos J. J. 1998; Differential expression of multiple flagellins in Vibrio cholerae. J Bacteriol 180:303–316
    [Google Scholar]
  25. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795
    [Google Scholar]
  26. Kovacikova G., Skorupski K. 2001; Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP–CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 41:393–407
    [Google Scholar]
  27. Kovacikova G., Skorupski K. 2002; Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol 46:1135–1147
    [Google Scholar]
  28. Kovacikova G., Skorupski K. 2002a; The alternative sigma factor sigma E plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect Immun 70:5355–5362
    [Google Scholar]
  29. Lenz D. H., Bassler B. L. 2007; The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol Microbiol 63:859–871
    [Google Scholar]
  30. Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L. 2004; The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82
    [Google Scholar]
  31. Lenz D. H., Miller M. B., Zhu J., Kulkarni R. V., Bassler B. L. 2005; CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58:1186–1202
    [Google Scholar]
  32. Li C. C., Merrell D. S., Camilli A., Kaper J. B. 2002; ToxR interferes with CRP-dependent transcriptional activation of ompT in Vibrio cholerae. Mol Microbiol 43:1577–1589
    [Google Scholar]
  33. Marcus H., Ketley J. M., Kaper J. B., Holmes R. K. 1990; Effect of DNAse production, plasmid size and restriction barrier on transformation of Vibrio cholerae by electroporation and osmotic shock. FEMS Microbiol Lett 56:149–154
    [Google Scholar]
  34. Mathur J., Waldor M. K. 2004; The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72:3577–3583
    [Google Scholar]
  35. Matz C., McDougald D., Moreno A. M., Yung P. Y., Yildiz F. H., Kjelleberg S. 2005; Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci U S A 102:16819–16824
    [Google Scholar]
  36. Merrell D. S., Tischler A. D., Lee S. H., Camilli A. 2000; Vibrio cholerae requires rpoS for efficient intestinal colonization. Infect Immun 68:6691–6696
    [Google Scholar]
  37. Merrell D. S., Bailey C., Kaper J. B., Camilli A. 2001; The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J Bacteriol 183:2746–2754
    [Google Scholar]
  38. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane protein and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583
    [Google Scholar]
  39. Miller V. L., DiRita V. J., Mekalanos J. J. 1989; Identification of toxS, a regulatory gene whose product enhances toxR-mediated activation of the cholera toxin promoter. J Bacteriol 171:1288–1293
    [Google Scholar]
  40. Miller M. B., Skorupski K., Lenz D. H., Taylor R. K., Bassler B. L. 2002; Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314
    [Google Scholar]
  41. Prouty M. G., Correa N. E., Klose K. E. 2001; The novel sigma 54- and sigma 28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol 39:1595–1609
    [Google Scholar]
  42. Provenzano D., Klose K. E. 2000; Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U S A 97:10220–10224
    [Google Scholar]
  43. Provenzano D., Lauriano C. M., Klose K. E. 2001; Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J Bacteriol 183:3652–3662
    [Google Scholar]
  44. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A. 2006; Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 4:e2
    [Google Scholar]
  45. Silva A. J., Benitez J. A. 2004; Transcriptional regulation of Vibrio cholerae hemagglutinin/protease by the cyclic AMP receptor protein and RpoS. J Bacteriol 186:6374–6382
    [Google Scholar]
  46. Silva A. J., Fando R., Benitez J. A. 1998; Overexpression of a mutant B subunit in toxigenic Vibrio cholerae diminishes production of active cholera toxin in vivo. Curr Microbiol 37:231–235
    [Google Scholar]
  47. Silva A. J., Leitch G. J., Camilli A., Benitez J. A. 2006; Contribution of hemagglutinin/protease and motility to the pathogenesis of El Tor biotype cholera. Infect Immun 74:2072–2079
    [Google Scholar]
  48. Skorupski K., Taylor R. K. 1997; Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin co-regulated pilus in Vibrio cholerae. Proc Natl Acad Sci U S A 94:265–270
    [Google Scholar]
  49. Stülke J., Hillen W. 1999; Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201
    [Google Scholar]
  50. Tian Z.-X., Li Q.-S., Buck M., Kolb A., Wang Y.-P. 2001; The CRP–cAMP complex and down-regulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli. Mol Microbiol 41:911–924
    [Google Scholar]
  51. Wang L., Hashimoto Y., Tsao C.-Y., Valdes J. J., Bentley W. E. 2005; Cyclic AMP (cAMP) and cAMP receptor protein influences both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J Bacteriol 187:2066–2076
    [Google Scholar]
  52. Wibbenmeyer J. A., Provenzano D., Landry C. F., Klose K. E., Delcour A. H. 2002; Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect Immun 70:121–126
    [Google Scholar]
  53. Xu Q., Dziejman M., Mekalanos J. J. 2003; Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100:1286–1291
    [Google Scholar]
  54. Yildiz F. H., Liu X. S., Heydorn A., Schoolnik G. K. 2004; Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515
    [Google Scholar]
  55. Zhu J., Mekalanos J. J. 2003; Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5:647–656
    [Google Scholar]
  56. Zhu J., Miller M. B., Vance R. E., Dziejman M., Bassler B. L., Mekalanos J. J. 2002; Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 99:3129–3134
    [Google Scholar]
  57. Zolotukhina M., Ovcharova I., Eremita S., Errais Lopes L., Mironov A. 2003; Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium and Escherichia coli. Res Microbiol 154:510–520
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2007/006668-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006668-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error