1887

Abstract

Intracellular copper homeostasis in bacteria is maintained as the result of a complex ensemble of cellular processes that in involve the coordinated action of two systems, and . In contrast, the pathogenic bacterium harbours only the regulon, including which is shown here to be transcriptionally controlled by CueR. Mutant strains in the CueR-regulated genes were constructed to characterize the response of serovar Typhimurium to high concentrations of extracellular copper under both aerobic and anaerobic conditions. Unlike its counterpart in , inactivation of displays the most severe phenotype and is also required for copper tolerance under anaerobic conditions. Deletion of has a mild effect in aerobiosis, but strongly impairs survival in the absence of oxygen. In a Δ strain, a second S-specific P-type ATPase, GolT, can substitute the copper transporter, diminishing the effect of its deletion. The overall results highlight the importance of the system for controlling intracellular copper stress. The observed differences between and in handling copper excess may contribute to our understanding of the distinct capability of these related pathogenic bacteria to survive outside the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006536-0
2007-09-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2989.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006536-0&mimeType=html&fmt=ahah

References

  1. Aguirre A., Lejona S., García Véscovi E., Soncini F. C.. 2000; Phosphorylated PmrA interacts with the promoter region of ugd in Salmonella enterica serovar Typhimurium. J Bacteriol182:3874–3876
    [Google Scholar]
  2. Ansari A. Z., Bradner J. E., O'Halloran T. V.. 1995; DNA-bend modulation in a repressor-to-activator switching mechanism. Nature374:371–375
    [Google Scholar]
  3. Arguello J. M., Eren E., Gonzalez-Guerrero M.. 2007; The structure and function of heavy metal transport P(1B)-ATPases. Biometals20:233–248
    [Google Scholar]
  4. Beswick P. H., Hall G. H., Hook A. J., Little K., McBrien D. C., Lott K. A.. 1976; Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact14:347–356
    [Google Scholar]
  5. Borkow G., Gabbay J.. 2005; Copper as a biocidal tool. Curr Med Chem12:2163–2175
    [Google Scholar]
  6. Bullas L. R., Ryu J. I.. 1983; Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol156:471–474
    [Google Scholar]
  7. Checa S. K., Espariz M., Pérez Audero M. E., Botta P. E., Spinelli S. V., Soncini F. C.. 2007; Bacterial sensing of and resistance to gold salts. Mol Microbiol63:1307–1318
    [Google Scholar]
  8. Cherepanov P. P., Wackernagel W.. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158:9–14
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645
    [Google Scholar]
  10. Davis R. W., Bolstein D., Roth J. R.. 1980; Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  11. Ellermeier C. D., Janakiraman A., Slauch J. M.. 2002; Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene290:153–161
    [Google Scholar]
  12. Franke S., Grass G., Rensing C., Nies D. H.. 2003; Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol185:3804–3812
    [Google Scholar]
  13. Kershaw C. J., Brown N. L., Constantinidou C., Patel M. D., Hobman J. L.. 2005; The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology151:1187–1198
    [Google Scholar]
  14. Kim J. S., Kim M. H., Joe M. H., Song S. S., Lee I. S., Choi S. Y.. 2002; The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett210:99–103
    [Google Scholar]
  15. Kuhlbrandt W.. 2004; Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol5:282–295
    [Google Scholar]
  16. Lejona S., Aguirre A., Cabeza M. L., García Véscovi E., Soncini F. C.. 2003; Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J Bacteriol185:6287–6294
    [Google Scholar]
  17. Lim S. Y., Joe M. H., Song S. S., Lee M. H., Foster J. W., Park Y. K., Choi S. Y., Lee I. S.. 2002; CuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar Typhimurium. Mol Cells14:177–184
    [Google Scholar]
  18. Macomber L., Rensing C., Imlay J. A.. 2007; Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol189:1616–1626
    [Google Scholar]
  19. Magnani D., Solioz M.. 2005; Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Biometals18:407–412
    [Google Scholar]
  20. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  21. Moore C. M., Helmann J. D.. 2005; Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol8:188–195
    [Google Scholar]
  22. Munson G. P., Lam D. L., Outten F. W., O'Halloran T. V.. 2000; Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol182:5864–5871
    [Google Scholar]
  23. Nies D. H.. 2003; Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev27:313–339
    [Google Scholar]
  24. O'Halloran T. V., Frantz B., Shin M. K., Ralston D. M., Wright J. G.. 1989; The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell56:119–129
    [Google Scholar]
  25. Outten C. E., O'Halloran T. V.. 2001; Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science292:2488–2492
    [Google Scholar]
  26. Outten C. E., Outten F. W., O'Halloran T. V.. 1999; DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem274:37517–37524
    [Google Scholar]
  27. Outten F. W., Outten C. E., Hale J., O'Halloran T. V.. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue. CueR. J Biol Chem275:31024–31029
    [Google Scholar]
  28. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V.. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem276:30670–30677
    [Google Scholar]
  29. Parkhill J., Thomson N.. 2003; Evolutionary strategies of human pathogens. Cold Spring Harb Symp Quant Biol68:151–158
    [Google Scholar]
  30. Petersen C., Moller L. B.. 2000; Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene261:289–298
    [Google Scholar]
  31. Rensing C., Grass G.. 2003; Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev27:197–213
    [Google Scholar]
  32. Singh S. K., Grass G., Rensing C., Montfort W. R.. 2004; Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol186:7815–7817
    [Google Scholar]
  33. Stoyanov J. V., Hobman J. L., Brown N. L.. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol39:502–511
    [Google Scholar]
  34. Stoyanov J. V., Magnani D., Solioz M.. 2003; Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett546:391–394
    [Google Scholar]
  35. Tree J. J., Kidd S. P., Jennings M. P., McEwan A. G.. 2005; Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochem Biophys Res Commun328:1205–1210
    [Google Scholar]
  36. Wiethaus J., Wildner G. F., Masepohl B.. 2006; The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus. FEMS Microbiol Lett256:67–74
    [Google Scholar]
  37. Yamamoto K., Ishihama A.. 2005; Transcriptional response of Escherichia coli to external copper. Mol Microbiol56:215–227
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006536-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006536-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error