1887

Abstract

Intracellular copper homeostasis in bacteria is maintained as the result of a complex ensemble of cellular processes that in involve the coordinated action of two systems, and . In contrast, the pathogenic bacterium harbours only the regulon, including which is shown here to be transcriptionally controlled by CueR. Mutant strains in the CueR-regulated genes were constructed to characterize the response of serovar Typhimurium to high concentrations of extracellular copper under both aerobic and anaerobic conditions. Unlike its counterpart in , inactivation of displays the most severe phenotype and is also required for copper tolerance under anaerobic conditions. Deletion of has a mild effect in aerobiosis, but strongly impairs survival in the absence of oxygen. In a Δ strain, a second S-specific P-type ATPase, GolT, can substitute the copper transporter, diminishing the effect of its deletion. The overall results highlight the importance of the system for controlling intracellular copper stress. The observed differences between and in handling copper excess may contribute to our understanding of the distinct capability of these related pathogenic bacteria to survive outside the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006536-0
2007-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2989.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006536-0&mimeType=html&fmt=ahah

References

  1. Aguirre, A., Lejona, S., García Véscovi, E. & Soncini, F. C. ( 2000; ). Phosphorylated PmrA interacts with the promoter region of ugd in Salmonella enterica serovar Typhimurium. J Bacteriol 182, 3874–3876.[CrossRef]
    [Google Scholar]
  2. Ansari, A. Z., Bradner, J. E. & O'Halloran, T. V. ( 1995; ). DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 371–375.
    [Google Scholar]
  3. Arguello, J. M., Eren, E. & Gonzalez-Guerrero, M. ( 2007; ). The structure and function of heavy metal transport P(1B)-ATPases. Biometals 20, 233–248.[CrossRef]
    [Google Scholar]
  4. Beswick, P. H., Hall, G. H., Hook, A. J., Little, K., McBrien, D. C. & Lott, K. A. ( 1976; ). Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact 14, 347–356.[CrossRef]
    [Google Scholar]
  5. Borkow, G. & Gabbay, J. ( 2005; ). Copper as a biocidal tool. Curr Med Chem 12, 2163–2175.[CrossRef]
    [Google Scholar]
  6. Bullas, L. R. & Ryu, J. I. ( 1983; ). Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156, 471–474.
    [Google Scholar]
  7. Checa, S. K., Espariz, M., Pérez Audero, M. E., Botta, P. E., Spinelli, S. V. & Soncini, F. C. ( 2007; ). Bacterial sensing of and resistance to gold salts. Mol Microbiol 63, 1307–1318.[CrossRef]
    [Google Scholar]
  8. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  9. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  10. Davis, R. W., Bolstein, D. & Roth, J. R. ( 1980; ). Advanced Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  11. Ellermeier, C. D., Janakiraman, A. & Slauch, J. M. ( 2002; ). Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290, 153–161.[CrossRef]
    [Google Scholar]
  12. Franke, S., Grass, G., Rensing, C. & Nies, D. H. ( 2003; ). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185, 3804–3812.[CrossRef]
    [Google Scholar]
  13. Kershaw, C. J., Brown, N. L., Constantinidou, C., Patel, M. D. & Hobman, J. L. ( 2005; ). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151, 1187–1198.[CrossRef]
    [Google Scholar]
  14. Kim, J. S., Kim, M. H., Joe, M. H., Song, S. S., Lee, I. S. & Choi, S. Y. ( 2002; ). The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett 210, 99–103.[CrossRef]
    [Google Scholar]
  15. Kuhlbrandt, W. ( 2004; ). Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5, 282–295.[CrossRef]
    [Google Scholar]
  16. Lejona, S., Aguirre, A., Cabeza, M. L., García Véscovi, E. & Soncini, F. C. ( 2003; ). Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J Bacteriol 185, 6287–6294.[CrossRef]
    [Google Scholar]
  17. Lim, S. Y., Joe, M. H., Song, S. S., Lee, M. H., Foster, J. W., Park, Y. K., Choi, S. Y. & Lee, I. S. ( 2002; ). CuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar Typhimurium. Mol Cells 14, 177–184.
    [Google Scholar]
  18. Macomber, L., Rensing, C. & Imlay, J. A. ( 2007; ). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189, 1616–1626.[CrossRef]
    [Google Scholar]
  19. Magnani, D. & Solioz, M. ( 2005; ). Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Biometals 18, 407–412.[CrossRef]
    [Google Scholar]
  20. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Moore, C. M. & Helmann, J. D. ( 2005; ). Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8, 188–195.[CrossRef]
    [Google Scholar]
  22. Munson, G. P., Lam, D. L., Outten, F. W. & O'Halloran, T. V. ( 2000; ). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182, 5864–5871.[CrossRef]
    [Google Scholar]
  23. Nies, D. H. ( 2003; ). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27, 313–339.[CrossRef]
    [Google Scholar]
  24. O'Halloran, T. V., Frantz, B., Shin, M. K., Ralston, D. M. & Wright, J. G. ( 1989; ). The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56, 119–129.[CrossRef]
    [Google Scholar]
  25. Outten, C. E. & O'Halloran, T. V. ( 2001; ). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492.[CrossRef]
    [Google Scholar]
  26. Outten, C. E., Outten, F. W. & O'Halloran, T. V. ( 1999; ). DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274, 37517–37524.[CrossRef]
    [Google Scholar]
  27. Outten, F. W., Outten, C. E., Hale, J. & O'Halloran, T. V. ( 2000; ). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275, 31024–31029.[CrossRef]
    [Google Scholar]
  28. Outten, F. W., Huffman, D. L., Hale, J. A. & O'Halloran, T. V. ( 2001; ). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276, 30670–30677.[CrossRef]
    [Google Scholar]
  29. Parkhill, J. & Thomson, N. ( 2003; ). Evolutionary strategies of human pathogens. Cold Spring Harb Symp Quant Biol 68, 151–158.[CrossRef]
    [Google Scholar]
  30. Petersen, C. & Moller, L. B. ( 2000; ). Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261, 289–298.[CrossRef]
    [Google Scholar]
  31. Rensing, C. & Grass, G. ( 2003; ). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27, 197–213.[CrossRef]
    [Google Scholar]
  32. Singh, S. K., Grass, G., Rensing, C. & Montfort, W. R. ( 2004; ). Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186, 7815–7817.[CrossRef]
    [Google Scholar]
  33. Stoyanov, J. V., Hobman, J. L. & Brown, N. L. ( 2001; ). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39, 502–511.[CrossRef]
    [Google Scholar]
  34. Stoyanov, J. V., Magnani, D. & Solioz, M. ( 2003; ). Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546, 391–394.[CrossRef]
    [Google Scholar]
  35. Tree, J. J., Kidd, S. P., Jennings, M. P. & McEwan, A. G. ( 2005; ). Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochem Biophys Res Commun 328, 1205–1210.[CrossRef]
    [Google Scholar]
  36. Wiethaus, J., Wildner, G. F. & Masepohl, B. ( 2006; ). The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus. FEMS Microbiol Lett 256, 67–74.[CrossRef]
    [Google Scholar]
  37. Yamamoto, K. & Ishihama, A. ( 2005; ). Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56, 215–227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006536-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006536-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error