1887

Abstract

MCP-01, the main protease secreted by the deep-sea cold-adapted bacterium sp. SM9913, is a cold-adapted serine protease. Gene encoding MCP-01 contains an ORF of 2508 bp encoding a protein of 835 amino acid residues with an of 87 773 Da, which is a multidomain subtilase precursor. Mature MCP-01 purified from the culture of strain SM9913 with an of 65.84 kDa is a multidomain protein composed of a catalytic domain, a linker, a P_proprotein domain and a polycystic kidney disease (PKD) domain. To the best of the authors' knowledge, no mature subtilase has been reported to date with this domain architecture. Phylogenetic analyses of subtilases showed that MCP-01 and 12 hypothetical proteins retrieved from public databases form a strongly supported group within the subtilase subfamily. These 13 proteins are predicted to share a similar domain architecture and represent a structurally novel group within the S8A subfamily. The substrate specificities of MCP-01 towards synthetic peptides differed from that of a typical S8A protease, subtilisin Carlsberg. Since most of this new subgroup of subtilases, including MCP-01 and the 12 MCP-01-like subtilases, are from deep-sea bacteria, they are termed deseasins. MCP-01 is the type example of a deseasin, since it is the only one that has been purified and characterized. In addition, the structural characteristics and catalytic properties of deseasin MCP-01 show that structurally and kinetically it is adapted to low temperatures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006056-0
2007-07-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2116.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006056-0&mimeType=html&fmt=ahah

References

  1. Ahsan, M. M., Kimura, T., Karita, S., Sakka, K. & Ohmiya, K. ( 1996; ). Cloning, DNA sequencing and expression of the gene encoding Clostridium thermocellum cellulose CelJ, the largest catalytic component of the cellulosome. J Bacteriol 178, 5732–5740.
    [Google Scholar]
  2. Bendtsen, J. D., Nielsen, H., Von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Chen, X.-L., Sun, C.-Y., Zhang, Y.-Z. & Gao, P.-J. ( 2002; ). Effects of different buffers on the thermostability and autolysis of a cold-adapted protease MCP-01. J Protein Chem 21, 523–527.[CrossRef]
    [Google Scholar]
  5. Chen, X.-L., Zhang, Y.-Z., Gao, P.-J. & Luan, X.-W. ( 2003a; ). Two different proteases produced by a deep-sea psychrotrophic strain Pseudoaltermonas sp. SM9913. Marine Biol 143, 989–993.[CrossRef]
    [Google Scholar]
  6. Chen, X.-L., Sun, C.-Y., Zhang, Y.-Z. & Gao, P.-J. ( 2003b; ). Rapid monitoring of autolysis process of proteases by capillary electrophoresis. Biotechnol Lett 25, 1763–1767.[CrossRef]
    [Google Scholar]
  7. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. ( 1978; ). A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, pp. 345–358. Edited by M. O. Dayhoff. Washington, DC: National Biomedical Research Foundation.
  8. Feller, G. ( 2003; ). Molecular adaptation to cold in psychrophilic enzymes. Cell Mol Life Sci 60, 648–662.[CrossRef]
    [Google Scholar]
  9. Georlette, D., Blaise, V., Collins, T., D'Amico, S., Gratia, E., Hoyoux, A., Marx, J.-C., Sonan, G., Feller, G. & Gerday, C. ( 2004; ). Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28, 25–42.[CrossRef]
    [Google Scholar]
  10. Gluschankof, P. & Fuller, R. S. ( 1994; ). A C-terminal domain conserved in precursor processing proteases is required for intramolecular N-terminal mutation of pro-Kex2 protease. EMBO J 13, 2280–2288.
    [Google Scholar]
  11. Grøn, H., Meldal, M. & Breddam, K. ( 1992; ). Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry 31, 6011–6018.[CrossRef]
    [Google Scholar]
  12. Guex, N. & Peitsch, M. C. ( 1997; ). swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.[CrossRef]
    [Google Scholar]
  13. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  14. He, H., Chen, X., Li, J., Zhang, Y. & Gao, P. ( 2004; ). Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chem 84, 307–311.[CrossRef]
    [Google Scholar]
  15. Huang, L. & Forsberg, C. W. ( 1987; ). Isolation of a cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol 53, 1034–1041.
    [Google Scholar]
  16. Ikai, A. ( 1980; ). Thermostability and aliphatic index of globular proteins. J Biochem (Tokyo) 88, 1895–1898.
    [Google Scholar]
  17. Juncker, A. S., Willenbrock, H., Heijne, G., Nielsen, H., Brunak, S. & Krogh, A. ( 2003; ). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12, 1652–1662.[CrossRef]
    [Google Scholar]
  18. Kulakova, L., Galkin, A., Kurihara, T., Yoshimura, T. & Esaki, N. ( 1999; ). Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65, 611–617.
    [Google Scholar]
  19. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  20. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  21. Liu, Y. G. & Whittier, R. F. ( 1995; ). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681.[CrossRef]
    [Google Scholar]
  22. Lund, O., Nielsen, M., Lundegaard, C. & Worning, P. ( 2002; ). CPHmodels 2.0: X3M a computer program to extract 3D models. Abstract A102 at the CASP5 Conference, Fifth Community-Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction, Pacific Grove, CA, December 2002.
  23. Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y., Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D. & other authors ( 2005; ). CDD: a conserved domain database for protein classification. Nucleic Acids Res 33, D192–D196.[CrossRef]
    [Google Scholar]
  24. Matsushita, O., Jung, C.-M., Katayama, S., Minami, J., Takahashi, Y. & Okabe, A. ( 1999; ). Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J Bacteriol 181, 923–933.
    [Google Scholar]
  25. Miyamoto, K., Nukui, E., Itoh, H., Sato, T., Kobayashi, T., Imada, C., Watanabe, E., Inamori, Y. & Tsujibo, H. ( 2002; ). Molecular analysis of the gene encoding a novel chitin-binding protease from Alteromonas sp. strain O-7 and its role in the chitinolytic system. J Bacteriol 184, 1865–1872.[CrossRef]
    [Google Scholar]
  26. Murray, M. G. & Thompson, W. F. ( 1980; ). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8, 4321–4325.[CrossRef]
    [Google Scholar]
  27. Oda, K., Ito, M., Uchida, K., Shibano, Y., Fukuhara, K. & Takahashi, S. ( 1996; ). Cloning and expression of an isovaleryl pepstatin-insensitive carboxyl proteinase gene from Xanthomonas sp. T-22. J Biochem (Tokyo) 120, 564–572.[CrossRef]
    [Google Scholar]
  28. Orikoshi, H., Nakayama, S., Hanato, C., Miyamoto, K. & Tsujibo, H. ( 2005; ). Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7. J Appl Microbiol 99, 551–557.[CrossRef]
    [Google Scholar]
  29. Peek, K., Veitch, D. P., Prescott, M., Daniel, R. M., MacIver, B. & Bergquist, P. L. ( 1993; ). Some characteristics of a proteinase from a thermophilic Bacillus sp. expressed in Escherichia coli: comparison with the native enzyme and its processing in E. coli and in vitro. Appl Environ Microbiol 59, 1168–1175.
    [Google Scholar]
  30. Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S. & Vorgias, C. E. ( 1994; ). Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2, 1169–1180.[CrossRef]
    [Google Scholar]
  31. Rawlings, N. D. & Barrett, A. J. ( 2004; ). Introduction: serine peptides and their clans. In Handbook of Proteolytic Enzymes, 2nd edn, pp. 1425–1427. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. London: Elsevier.
  32. Rawlings, N. D., Morton, F. R. & Barrett, A. J. ( 2006; ). MEROPS: the peptidase database. Nucleic Acids Res 34, D270–D272.[CrossRef]
    [Google Scholar]
  33. Siddiqui, K. S. & Cavicchioli, R. ( 2006; ). Cold-adapted enzymes. Annu Rev Biochem 75, 403–433.[CrossRef]
    [Google Scholar]
  34. Siezen, R. J. & Leunissen, J. A. M. ( 1997; ). Subtilases: the superfamily of subtilisin-like proteases. Protein Sci 6, 501–523.
    [Google Scholar]
  35. Smith, C. A., Toogood, H. S., Baker, H. M., Daniel, R. M. & Baker, E. N. ( 1999; ). Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 Å resolution. J Mol Biol 294, 1027–1040.[CrossRef]
    [Google Scholar]
  36. The International Polycystic Kidney Disease Consortium ( 1995; ). Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81, 289–298.[CrossRef]
    [Google Scholar]
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  38. Toogood, H. S., Smith, C. A., Baker, E. N. & Daniel, R. M. ( 2000; ). Purification and characterization of Ak.1 protease, a thermostable subtilisin with a disulphide bond in the substrate-binding cleft. Biochem J 350, 321–328.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006056-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006056-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 2116–2125

Supplementary materials [PDF file](219 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error