1887

Abstract

In prokaryotes, homologous recombination is essential for the repair of genomic DNA damage and for the integration of DNA taken up during horizontal gene transfer. In , the exonucleases RecJ (specific for 5′ single-stranded DNA) and RecBCD (degrades duplex DNA) play important roles in recombination and recombinational double-strand break (DSB) repair by the RecF and RecBCD pathways, respectively. The cloned of partially complemented an mutant, suggesting functional similarity of the enzymes. A Δ mutant of was only slightly altered in transformability and was not affected in UV survival. In contrast, a Δ mutant was UV-sensitive, and had a low viability and altered transformation. Compared to wild-type, transformation with large chromosomal DNA fragments was decreased about 5-fold, while transformation with 1.5 kbp DNA fragments was increased 3.3- to 7-fold. A Δ mutation did not affect transformation, viability or UV resistance. However, double mutants and were non-viable, suggesting that the RecJ DNase or the RecBCD DNase (presumably absent in ) becomes essential for the recombinational repair of spontaneously inactivated replication forks if the other DNase is absent. A model of recombination during genetic transformation is discussed in which the two ends of the single-stranded donor DNA present in the cytoplasm frequently integrate separately and often with a time difference. If replication runs through that genomic region before both ends of the donor DNA are ligated to recipient DNA, a double-strand break (DSB) is formed. In these cases, transformation becomes dependent on DSB repair.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005256-0
2007-07-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2259.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005256-0&mimeType=html&fmt=ahah

References

  1. Alonso, J. C., Stiege, A. C. & Lüder, G. ( 1993; ). Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Mol Gen Genet 239, 129–136.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Amundsen, S. K., Taylor, A. F., Chaudhury, A. M. & Smith, G. R. ( 1986; ). recD: the gene for an essential third subunit of exonuclease V. Proc Natl Acad Sci U S A 83, 5558–5562.[CrossRef]
    [Google Scholar]
  4. Anderson, D. G. & Kowalczykowski, S. C. ( 1997; ). The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90, 77–86.[CrossRef]
    [Google Scholar]
  5. Aravind, L. & Koonin, E. V. ( 1998; ). A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23, 17–19.[CrossRef]
    [Google Scholar]
  6. Arber, W. ( 2000; ). Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24, 1–7.[CrossRef]
    [Google Scholar]
  7. Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S. & other authors ( 2004; ). Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32, 5766–5779.[CrossRef]
    [Google Scholar]
  8. Biek, D. P. & Cohen, S. N. ( 1986; ). Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli. J Bacteriol 167, 594–603.
    [Google Scholar]
  9. Bruand, C., Farache, M., McGovern, S., Ehrlich, S. D. & Polard, P. ( 2001; ). DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol Microbiol 42, 245–255.
    [Google Scholar]
  10. Campbell, E. A., Choi, S. Y. & Masure, H. R. ( 1998; ). A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 27, 929–939.[CrossRef]
    [Google Scholar]
  11. Chen, I. & Dubnau, D. ( 2004; ). DNA uptake during bacterial transformation. Nat Rev Microbiol 2, 241–249.[CrossRef]
    [Google Scholar]
  12. Churchill, J. J., Anderson, D. G. & Kowalczykowski, S. C. ( 1999; ). The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi, resulting in constitutive recombination activation. Genes Dev 13, 901–911.[CrossRef]
    [Google Scholar]
  13. Clark, A. J. & Low, K. B. ( 1988; ). Pathways and systems of homologous recombination in Escherichia coli. In The Recombination of Genetic Material, pp. 155–215. Edited by K. B. Low. San Diego: Academic Press.
  14. Claverys, J.-P. & Lacks, S. A. ( 1986; ). Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev 50, 133–165.
    [Google Scholar]
  15. Courcelle, J. & Hanawalt, P. C. ( 1999; ). RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet 262, 543–551.[CrossRef]
    [Google Scholar]
  16. Courcelle, J. & Hanawalt, P. C. ( 2003; ). RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet 37, 611–646.[CrossRef]
    [Google Scholar]
  17. de Boer, H. A., Constock, L. J. & Vasse, M. ( 1983; ). The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80, 21–25.[CrossRef]
    [Google Scholar]
  18. de Vries, J. & Wackernagel, W. ( 1998; ). Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker rescue transformation. Mol Gen Genet 257, 606–613.[CrossRef]
    [Google Scholar]
  19. de Vries, J. & Wackernagel, W. ( 2002; ). Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 99, 2094–2099.[CrossRef]
    [Google Scholar]
  20. de Vries, J., Heine, M., Harms, K. & Wackernagel, W. ( 2003; ). Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of Acinetobacter sp. Appl Environ Microbiol 69, 4455–4462.[CrossRef]
    [Google Scholar]
  21. de Vries, J., Herzfeld, T. & Wackernagel, W. ( 2004; ). Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 53, 323–334.[CrossRef]
    [Google Scholar]
  22. Dedonder, R. ( 1966; ). Levansucrase from Bacillus subtilis. Methods Enzymol 8, 500–505.
    [Google Scholar]
  23. Dermic, D. ( 2006; ). Functions of multiple exonucleases are essential for cell viability, DNA repair and homologous recombination in recD mutants of Escherichia coli. Genetics 172, 2057–2069.
    [Google Scholar]
  24. Dubnau, D. ( 1999; ). DNA uptake in bacteria. Annu Rev Microbiol 53, 217–244.[CrossRef]
    [Google Scholar]
  25. Dubnau, D., Davidoff-Abelson, R., Scher, B. & Cirigliano, C. ( 1973; ). Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants. J Bacteriol 114, 273–286.
    [Google Scholar]
  26. Fernández, S., Ayora, S. & Alonso, J. C. ( 2000; ). Bacillus subtilis homologous recombination: genes and products. Res Microbiol 151, 481–486.[CrossRef]
    [Google Scholar]
  27. Friedman-Ohana, R. & Cohen, A. ( 1998; ). Heteroduplex joint formation in Escherichia coli recombination is initiated by pairing of a 3′-ending strand. Proc Natl Acad Sci U S A 95, 6909–6914.[CrossRef]
    [Google Scholar]
  28. Garzón, A., Beuzón, C. R., Mahan, M. J. & Casadesús, J. ( 1996; ). recB recJ mutants of Salmonella typhimurium are deficient in transductional recombination, DNA repair and plasmid maintenance. Mol Gen Genet 250, 570–580.
    [Google Scholar]
  29. Goodgal, S. H. ( 1982; ). DNA uptake in Haemophilus transformation. Annu Rev Genet 16, 169–192.[CrossRef]
    [Google Scholar]
  30. Graupner, S. & Wackernagel, W. ( 2000; ). A broad-host-range expression vector series including a Ptac test plasmid and its application in the expression of the dod gene of Serratia marcescens (coding for ribulose-5-phosphate 3-epimerase) in Pseudomonas stutzeri. Biomol Eng 17, 11–16.[CrossRef]
    [Google Scholar]
  31. Haijema, B. J., Noback, M., Hesseling, A., Kooistra, J., Venema, G. & Meima, R. ( 1996; ). Replacement of the lysine residue in the consensus ATP-binding sequence of the AddA subunit of AddAB drastically affects chromosomal recombination in transformation and transduction of Bacillus subtilis. Mol Microbiol 21, 989–999.[CrossRef]
    [Google Scholar]
  32. Halpern, D., Gruss, A., Claverys, J.-P. & Karoui, M. E. ( 2004; ). rexAB mutants in Streptococcus pneumoniae. Microbiology 150, 2409–2414.[CrossRef]
    [Google Scholar]
  33. Harms, K., Schön, V., Kickstein, E. & Wackernagel, W. ( 2007; ). The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi. Mol Microbiol 64, 691–702.[CrossRef]
    [Google Scholar]
  34. Ivančić-Baće, I., Salaj-Šmic, E. & Brčić-Kostić, K. ( 2005; ). Effects of recJ, recQ, and recFOR mutations on recombination in nuclease-deficient recB recD double mutants of Escherichia coli. J Bacteriol 187, 1350–1356.[CrossRef]
    [Google Scholar]
  35. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191–197.[CrossRef]
    [Google Scholar]
  36. Kooistra, J. & Venema, G. ( 1976; ). Effect of adenosine 5′-triphosphate-dependent deoxyribonuclease deficiency on properties and transformation of Haemophilus influenzae strains. J Bacteriol 128, 549–556.
    [Google Scholar]
  37. Kowalczykowski, S. C. ( 2000; ). Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25, 156–165.[CrossRef]
    [Google Scholar]
  38. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. ( 1994; ). Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58, 401–465.
    [Google Scholar]
  39. Kuzminov, A. ( 1999; ). Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol Mol Biol Rev 63, 751–813.
    [Google Scholar]
  40. Kuzminov, A. ( 2001; ). Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci U S A 98, 8241–8246.[CrossRef]
    [Google Scholar]
  41. Lloyd, R. G. & Low, K. B. ( 1996; ). Homologous recombination. In Escherichia coli and Salmonella, pp. 2236–2255. Edited by F. C. Neidhardt. Washington, DC: American Society for Microbiology Press.
  42. Lloyd, R. G., Buckman, C. & Benson, F. E. ( 1987; ). Genetic analysis of conjugational recombination in Escherichia coli K12 strains deficient in RecBCD enzyme. J Gen Microbiol 133, 2531–2538.
    [Google Scholar]
  43. Lloyd, R. G., Porton, M. C. & Buckman, C. ( 1988; ). Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol Gen Genet 212, 317–324.[CrossRef]
    [Google Scholar]
  44. Lorenz, M. G. & Wackernagel, W. ( 1994; ). Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58, 563–602.
    [Google Scholar]
  45. Lovett, S. T. & Clark, A. J. ( 1984; ). Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol 157, 190–196.
    [Google Scholar]
  46. Lovett, S. T. & Kolodner, R. D. ( 1989; ). Identification and purification of a single-stranded DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A 86, 2627–2631.[CrossRef]
    [Google Scholar]
  47. Lovett, S. T., Luisi-DeLuca, C. & Kolodner, R. D. ( 1988; ). The genetic dependence of recombination in recD mutants of Escherichia coli. Genetics 120, 37–45.
    [Google Scholar]
  48. Majewski, J. & Cohan, F. M. ( 1998; ). The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148, 13–18.
    [Google Scholar]
  49. Majewski, J. & Cohan, F. M. ( 1999; ). DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153, 1525–1533.
    [Google Scholar]
  50. Maloy, S. R. & Nunn, W. D. ( 1981; ). Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145, 1110–1112.
    [Google Scholar]
  51. McIlwraith, M. J. & West, S. C. ( 2001; ). The efficiency of strand invasion by Escherichia coli RecA is dependent upon the length and polarity of ssDNA tails. J Mol Biol 305, 23–31.[CrossRef]
    [Google Scholar]
  52. Mehr, I. J. & Seifert, H. S. ( 1998; ). Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30, 697–710.[CrossRef]
    [Google Scholar]
  53. Meier, P. & Wackernagel, W. ( 2005; ). Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 187, 143–154.[CrossRef]
    [Google Scholar]
  54. Mendonca, V. M., Klepin, H. D. & Matson, S. W. ( 1995; ). DNA helicases in recombination and repair: construction of a ΔuvrD ΔhelD ΔrecQ mutant deficient in recombination and repair. J Bacteriol 177, 1326–1335.
    [Google Scholar]
  55. Michel, B., Niaudet, B. & Ehrlich, S. D. ( 1982; ). Intramolecular recombination during plasmid transformation of Bacillus subtilis competent cells. EMBO J 1, 1565–1571.
    [Google Scholar]
  56. Michel, B., Flores, M.-J., Viguera, E., Grompone, G., Seigneur, M. & Bidnenko, V. ( 2001; ). Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci U S A 98, 8181–8188.[CrossRef]
    [Google Scholar]
  57. Michel, B., Grompone, G., Flores, M.-J. & Bidnenko, V. ( 2004; ). Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A 101, 12783–12788.[CrossRef]
    [Google Scholar]
  58. Miesel, L. & Roth, J. R. ( 1996; ). Evidence that SbcB and RecF pathway functions contribute to RecBCD-dependent transductional recombination. J Bacteriol 178, 3146–3155.
    [Google Scholar]
  59. Miranda, A. & Kuzminov, A. ( 2003; ). Chromosomal lesion suppression and removal in Escherichia coli via linear DNA degradation. Genetics 163, 1255–1271.
    [Google Scholar]
  60. Morrison, D. A. & Mannarelli, B. ( 1979; ). Transformation in pneumococcus: nuclease resistance of deoxyribonucleic acid in eclipse complex. J Bacteriol 140, 655–665.
    [Google Scholar]
  61. Palmen, R. & Hellingwerf, K. J. ( 1997; ). Uptake and processing of DNA by Acinetobacter calcoaceticus – a review. Gene 192, 179–190.[CrossRef]
    [Google Scholar]
  62. Palmen, R., Vosman, B., Buijsman, P., Breek, C. K. & Hellingwerf, K. J. ( 1993; ). Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139, 295–305.[CrossRef]
    [Google Scholar]
  63. Rajman, L. A. & Lovett, S. T. ( 2000; ). A thermostable single-strand DNase from Methanococcus jannaschii related to the RecJ recombination and repair exonuclease from Escherichia coli. J Bacteriol 182, 607–612.[CrossRef]
    [Google Scholar]
  64. Razavy, H., Szigety, S. K. & Rosenberg, S. M. ( 1996; ). Evidence for both 3′ and 5′ single-strand DNA ends in intermediates in Chi-stimulated recombination in vivo. Genetics 142, 333–339.
    [Google Scholar]
  65. Rinken, R., Thoms, B. & Wackernagel, W. ( 1992; ). Evidence that recBC-dependent degradation of duplex DNA in Escherichia coli recD mutants involves DNA unwinding. J Bacteriol 174, 5424–5429.
    [Google Scholar]
  66. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  67. Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M. & Scherzinger, E. ( 1989; ). Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75, 271–288.[CrossRef]
    [Google Scholar]
  68. Sutera, V. A., Han, E. S., Rajman, L. A. & Lovett, S. T. ( 1999; ). Mutational analysis of the RecJ exonuclease of Escherichia coli: identification of phosphoesterase motifs. J Bacteriol 181, 6098–6102.
    [Google Scholar]
  69. te Riele, H. P. & Venema, G. ( 1982; ). Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis. I. Processing of B. pumilus and B. licheniformis DNA in B. subtilis. Genetics 101, 179–188.
    [Google Scholar]
  70. Thaler, D. S., Sampson, E., Siddiqi, I., Rosenberg, S. M., Thomason, L. C., Stahl, F. W. & Stahl, M. M. ( 1989; ). Recombination of bacteriophage lambda in recD mutants of Escherichia coli. Genome 31, 53–67.[CrossRef]
    [Google Scholar]
  71. Thoms, B. & Wackernagel, W. ( 1982; ). UV-induced alleviation of λ restriction in Escherichia coli K-12: kinetics of induction and specificity of this SOS function. Mol Gen Genet 186, 111–117.[CrossRef]
    [Google Scholar]
  72. Vijayakumar, M. N. & Morrison, D. A. ( 1986; ). Localization of competence-induced proteins of Streptococcus pneumoniae. J Bacteriol 165, 689–695.
    [Google Scholar]
  73. Viswanathan, M. & Lovett, S. T. ( 1998; ). Single-strand DNA-specific exonucleases in Escherichia coli: roles in repair and mutation avoidance. Genetics 149, 7–16.
    [Google Scholar]
  74. Vovis, G. F. ( 1973; ). Adenosine triphosphate-dependent deoxyribonuclease from Diplococcus pneumoniae: fate of transforming deoxyribonucleic acid in a strain deficient in the enzymatic activity. J Bacteriol 113, 718–723.
    [Google Scholar]
  75. Vovis, G. F. & Buttin, G. ( 1970; ). An ATP-dependent deoxyribonuclease from Diplococcus pneumoniae. II. Evidence for its involvement in bacterial recombination. Biochim Biophys Acta 224, 42–54.[CrossRef]
    [Google Scholar]
  76. Wilcox, K. W. & Smith, H. O. ( 1975; ). Isolation and characterization of mutants of Haemophilus influenzae deficient in an adenosine 5′-triphosphate-dependent deoxyribonuclease activity. J Bacteriol 122, 443–453.
    [Google Scholar]
  77. Young, D. M., Parke, D. & Ornston, L. N. ( 2005; ). Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu Rev Microbiol 59, 519–551.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005256-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005256-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error