1887

Abstract

The O-antigen moiety of the LPS is one of the most variable cell surface components of the Gram-negative bacterial outer membrane. Variation is due to the presence of different sugars and sugar linkages. Here, it is reported that a group of O serogroups (O17, O44, O73, O77 and O106), and the serogroup O : 6,14 (H), share a common four-sugar backbone O-subunit structure, and possess almost identical O-antigen gene clusters. Whereas the O77 antigen does not have any substitutions, the other O antigens in this group differ by the addition of one or two glucose side branches at various positions of the backbone. The O-antigen gene clusters for all members of the group encode only the proteins required for biosynthesis of the common four-sugar backbone. The identification of three genes within a putative prophage in the O44 genome is also reported; these genes are presumably involved in the glucosylation of the basic tetrasaccharide unit. This was confirmed by deletion of one of the genes, which encodes a putative glucosyltransferase. Structural analysis of the O antigen produced by the mutant strain demonstrated the absence of glucosylation. An O-antigen structure shared by five and one serogroups, all of which have a long evolutionary history, suggests that the common backbone may be important for the survival of strains in the environment, or for their pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/004192-0
2007-07-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2159.html?itemId=/content/journal/micro/10.1099/mic.0.2007/004192-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. C. & Valvano, M. A. ( 1994; ). Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. J Bacteriol 176, 7079–7084.
    [Google Scholar]
  2. Allison, G. E. & Verma, N. K. ( 2000; ). Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 8, 17–23.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  4. Bastin, D. A. & Reeves, P. R. ( 1995; ). Sequence and analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. Gene 164, 17–23.[CrossRef]
    [Google Scholar]
  5. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S. R., Griffiths-Jones, S., Howe, K. L., Marshall, M. & Sonnhammer, E. L. ( 2002; ). The Pfam protein families database. Nucleic Acids Res 30, 276–280.[CrossRef]
    [Google Scholar]
  6. Bielaszewska, M., Fell, M., Greune, L., Prager, R., Fruth, A., Tschape, H., Schmidt, M. A. & Karch, H. ( 2004; ). Characterization of cytolethal distending toxin genes and expression in shiga toxin-producing Escherichia coli strains of non-O157 serogroups. Infect Immun 72, 1812–1816.[CrossRef]
    [Google Scholar]
  7. Campbell, A. ( 2003; ). Prophage insertion sites. Res Microbiol 154, 277–282.[CrossRef]
    [Google Scholar]
  8. Coimbra, R. S., Grimont, F., Lenormand, P., Burguiere, P., Beutin, L. & Grimont, P. A. ( 2000; ). Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 151, 639–654.[CrossRef]
    [Google Scholar]
  9. Comeron, J. M. ( 1999; ). K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15, 763–764.[CrossRef]
    [Google Scholar]
  10. Conrad, H. E. ( 1972; ). Methylation of carbohydrates with methyl iodide in dimethyl sulfoxide in the presence of methylsulfinylanion. Methods Carbohydr Chem 6, 361–364.
    [Google Scholar]
  11. Daniels, C., Vindurampulle, C. & Morona, R. ( 1998; ). Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28, 1211–1222.[CrossRef]
    [Google Scholar]
  12. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  13. di Fabio, J. L., Brisson, J. R. & Perry, M. B. ( 1988; ). Structure of the major lipopolysaccharide antigenic O-chain produced by Salmonella carrau (O : 6, 14, 24). Carbohydr Res 179, 233–244.[CrossRef]
    [Google Scholar]
  14. Fitzgerald, C., Sherwood, R., Gheesling, L. L., Brenner, F. W. & Fields, P. I. ( 2003; ). Molecular analysis of the rfb O antigen gene cluster of Salmonella enterica serogroup O : 6,14 and development of a serogroup-specific PCR assay. Appl Environ Microbiol 69, 6099–6105.[CrossRef]
    [Google Scholar]
  15. Gerwig, G. J., Kamerling, J. P. & Vliegenthart, J. F. G. ( 1979; ). Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary GLC. Carbohydr Res 77, 1–7.[CrossRef]
    [Google Scholar]
  16. Hirokawa, T., Boon-Chieng, S. & Mitaku, S. ( 1998; ). sosui: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.[CrossRef]
    [Google Scholar]
  17. Jansson, P. E., Kenne, L. & Widmalm, G. ( 1989; ). Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-n.m.r. data. Carbohydr Res 188, 169–191.[CrossRef]
    [Google Scholar]
  18. Lee, S. J., Romana, L. K. & Reeves, P. R. ( 1992; ). Sequence and structural analysis of the rfb (O antigen) gene cluster from a group C1 Salmonella enterica strain. J Gen Microbiol 138, 1843–1855.[CrossRef]
    [Google Scholar]
  19. Leontein, K., Lindberg, B. & Lonngren, J. ( 1978; ). Assignment of absolute configuration of sugars by GLC of their acetylated glycosides formed from chiral alcohols. Carbohydr Res 62, 359–362.[CrossRef]
    [Google Scholar]
  20. Lipkind, G. M., Shashkov, A. S., Knirel, Y. A., Vinogradov, E. V. & Kochetkov, N. K. ( 1988; ). A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-n.m.r. data. Carbohydr Res 175, 59–75.[CrossRef]
    [Google Scholar]
  21. Liu, D., Cole, R. & Reeves, P. R. ( 1996; ). An O-antigen processing function for Wzx(RfbX): a promising candidate for O-unit flippase. J Bacteriol 178, 2102–2107.
    [Google Scholar]
  22. Masoud, H. & Perry, M. B. ( 1996; ). Structural characterization of the O-antigenic polysaccharide of Escherichia coli serotype O17 lipopolysaccharide. Biochem Cell Biol 74, 241–248.[CrossRef]
    [Google Scholar]
  23. Morona, R., Daniels, C. & Van Den Bosch, L. ( 2003; ). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149, 925–939.[CrossRef]
    [Google Scholar]
  24. Nataro, J. P. & Kaper, J. B. ( 1998; ). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.
    [Google Scholar]
  25. Ochman, H. & Wilson, A. C. ( 1987a; ). Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26, 74–86.[CrossRef]
    [Google Scholar]
  26. Ochman, H. & Wilson, A. C. ( 1987b; ). Evolutionary history of enteric bacteria. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1649–1654. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  27. Reeves, P. P. & Wang, L. ( 2002; ). Genomic organization of LPS-specific loci. Curr Top Microbiol Immunol 264, 109–135.
    [Google Scholar]
  28. Robbins, P. W. & Uchida, T. ( 1962; ). Studies on the chemical basis of the phage conversion of O-antigens in the E-group Salmonella. Biochemistry 1, 323–335.[CrossRef]
    [Google Scholar]
  29. Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M. A. & Barrell, B. ( 2000; ). Artemis: sequence visualisation and annotation. Bioinformatics 16, 944–945.[CrossRef]
    [Google Scholar]
  30. Sharp, P. M. ( 1991; ). Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium: codon usage, map position, and concerted evolution. J Mol Evol 33, 23–33.[CrossRef]
    [Google Scholar]
  31. Shepherd, J. G., Wang, L. & Reeves, P. R. ( 2000; ). Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immun 68, 6056–6061.[CrossRef]
    [Google Scholar]
  32. Staaf, M., Widmalm, G., Weintraub, A. & Nataro, J. P. ( 1995; ). Structural elucidation of the O-antigenic polysaccharide from Escherichia coli O44 : H18. Eur J Biochem 233, 473–477.[CrossRef]
    [Google Scholar]
  33. Staden, R. ( 1996; ). The Staden sequence analysis package. Mol Biotechnol 5, 233–241.[CrossRef]
    [Google Scholar]
  34. Tarr, P. I., Schoening, L. M., Yea, Y. L., Ward, T. R., Jelacic, S. & Whittam, T. S. ( 2000; ). Acquisition of the rfb-gnd cluster in evolution of Escherichia coli O55 and O157. J Bacteriol 182, 6183–6191.[CrossRef]
    [Google Scholar]
  35. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D. & Koonin, E. V. ( 2001; ). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29, 22–28.[CrossRef]
    [Google Scholar]
  36. Van den Bosch, L. & Morona, R. ( 2003; ). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. Microb Pathog 35, 11–18.[CrossRef]
    [Google Scholar]
  37. Wang, L. & Reeves, P. R. ( 1994; ). Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O antigen subunit processing. J Bacteriol 176, 4348–4356.
    [Google Scholar]
  38. Wang, L. & Reeves, P. R. ( 1998; ). Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66, 3545–3551.
    [Google Scholar]
  39. Wang, L. & Reeves, P. R. ( 2000; ). The Escherichia coli O111 and Salmonella enterica O35 gene clusters: gene clusters encoding the same colitose-containing O antigen are highly conserved. J Bacteriol 182, 5256–5261.[CrossRef]
    [Google Scholar]
  40. Wang, L., Briggs, C. E., Rothemund, D., Fratamico, P., Luchansky, J. B. & Reeves, P. R. ( 2001a; ). Sequence of the E. coli O104 antigen gene cluster and identification of O104-specific genes. Gene 270, 231–236.[CrossRef]
    [Google Scholar]
  41. Wang, L., Qu, W. & Reeves, P. R. ( 2001b; ). Sequence analysis of four Shigella boydii O-antigen loci: implication for Escherichia coli and Shigella relationships. Infect Immun 69, 6923–6930.[CrossRef]
    [Google Scholar]
  42. West, N. P., Sansonetti, P., Mounier, J., Exley, R. M., Parsot, C., Guadagnini, S., Prevost, M. C., Prochnicka-Chalufour, A., Delepierre, M. & other authors ( 2005; ). Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317.[CrossRef]
    [Google Scholar]
  43. Yildirim, H., Weintraub, A. & Widmalm, G. ( 2001; ). Structural studies of the O-polysaccharide from the Escherichia coli O77 lipopolysaccharide. Carbohydr Res 333, 179–183.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/004192-0
Loading
/content/journal/micro/10.1099/mic.0.2007/004192-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error