1887

Abstract

Butane monooxygenase (sBMO) has been purified to homogeneity from the Gram-negative -proteobacterium ‘’ and confirmed to be a three-component diiron monooxygenase system. The reconstituted enzyme complex oxidized C–C linear and branched aliphatic alkanes, which are growth substrates for ‘’. The sBMO complex was composed of an iron-containing hydroxylase (BMOH), a flavo-iron sulfur-containing NADH-oxidoreductase (BMOR) and a small regulatory component protein (BMOB). The physical characteristics of sBMO were remarkably similar to the sMMO family of soluble multicomponent diiron monooxgenases. However, the catalytic properties of sBMO were quantitatively different in regard to inactivation in the presence of substrate and product distribution. BMOH was capable of ethene oxidation when supplied with HO and ethene (known as the peroxide shunt), but this activity was at least three orders of magnitude less than that observed for the hydroxylase of sMMO of OB3b. BMOH and BMOR were efficient in the oxidation of ethene in the absence of BMOB with regard to rate of reaction and product yield. Regiospecificity of sBMO was strongly biased towards primary hydroxylation, with ≥80 % of the hydroxylations occurring at the terminal carbon atom.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004960-0
2007-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1808.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004960-0&mimeType=html&fmt=ahah

References

  1. Andersson, K. K., Froland, W. A., Lee, S. K. & Lipscomb, J. D. ( 1991; ). Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component. N J Chem 15, 411–415.
    [Google Scholar]
  2. Anzai, Y., Kim, H., Park, J. Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  3. Arp, D. J. ( 1999; ). Butane metabolism by butane-grown ‘Pseudomonas butanovora. Microbiology 145, 1173–1180.[CrossRef]
    [Google Scholar]
  4. Ashraf, W., Mihdhir, A. & Murrell, J. C. ( 1994; ). Bacterial oxidation of propane. FEMS Microbiol Lett 122, 1–6.[CrossRef]
    [Google Scholar]
  5. Bradford, M. M. ( 1976; ). A rapid and sensitive method for quantitation of microgram quantities of protein using the principal of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  6. Brandstetter, H., Whittington, D. A., Lippard, S. J. & Frederick, C. A. ( 1999; ). Mutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Chem Biol 6, 441–449.[CrossRef]
    [Google Scholar]
  7. Brazeau, B. J., Wallar, B. J. & Lipscomb, J. D. ( 2003; ). Effector proteins from P450(cam) and methane monooxygenase: lessons in tuning nature's powerful reagents. Biochem Biophys Res Commun 312, 143–148.[CrossRef]
    [Google Scholar]
  8. Cadieux, E., Vrajmasu, V., Achim, C., Powlowski, J. & Munck, E. ( 2002; ). Biochemical, Mossbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF 600. Biochemistry 41, 10680–10691.[CrossRef]
    [Google Scholar]
  9. Chang, S. L., Wallar, B. J., Lipscomb, J. D. & Mayo, K. H. ( 1999; ). Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38, 5799–5812.[CrossRef]
    [Google Scholar]
  10. Colby, J. & Dalton, H. ( 1979; ). Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochem J 177, 903–908.
    [Google Scholar]
  11. Doughty, D. M., Sayavedra-Soto, L. A., Arp, D. J. & Bottomley, P. J. ( 2005; ). Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium ‘Pseudomonas butanovora’. Appl Environ Microbiol 71, 6054–6059.[CrossRef]
    [Google Scholar]
  12. Doughty, D. M., Sayavedra-Soto, L. A., Arp, D. J. & Bottomley, P. J. ( 2006; ). Product repression of alkane monooxygenase expression in Pseudomonas butanovora. J Bacteriol 188, 2586–2592.[CrossRef]
    [Google Scholar]
  13. Fox, B. G., Froland, W. A., Dege, J. E. & Lipscomb, J. D. ( 1989; ). Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264, 10023–10033.
    [Google Scholar]
  14. Fox, B. G., Froland, W. A., Jollie, D. R. & Lipscomb, J. D. ( 1990; ). Methane monooxygenase from Methylosinus trichosporium OB3b. Methods Enzymol 188, 191–202.
    [Google Scholar]
  15. Fox, B. G., Liu, Y., Dege, J. E. & Lipscomb, J. D. ( 1991; ). Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction. J Biol Chem 266, 540–550.
    [Google Scholar]
  16. Froland, W. A., Andersson, K. K., Lee, S. K., Liu, Y. & Lipscomb, J. D. ( 1992; ). Methane monooxygenase component-B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions – a novel role for protein-protein interactions in an oxygenase mechanism. J Biol Chem 267, 17588–17597.
    [Google Scholar]
  17. Funhoff, E. G., Bauer, U., Garcia-Rubio, I., Witholt, B. & van Beilen, J. B. ( 2006; ). CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188, 5220–5227.[CrossRef]
    [Google Scholar]
  18. Green, J. & Dalton, H. ( 1985; ). Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 260, 15795–15801.
    [Google Scholar]
  19. Halsey, K. H., Sayavedra-Soto, L. A., Bottomley, P. J. & Arp, D. J. ( 2005; ). Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol 68, 794–801.[CrossRef]
    [Google Scholar]
  20. Halsey, K. H., Sayavedra-Soto, L. A., Bottomley, P. J. & Arp, D. J. ( 2006; ). Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. J Bacteriol 188, 4962–4969.[CrossRef]
    [Google Scholar]
  21. Hamamura, N., Page, C., Long, T., Semprini, L. & Arp, D. J. ( 1997; ). Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63, 3607–3613.
    [Google Scholar]
  22. Hamamura, N., Storfa, R. T., Semprini, L. & Arp, D. J. ( 1999; ). Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65, 4586–4593.
    [Google Scholar]
  23. Kopp, D. A. & Lippard, S. J. ( 2002; ). Soluble methane monooxygenase: activation of dioxygen and methane. Curr Opin Chem Biol 6, 568–576.[CrossRef]
    [Google Scholar]
  24. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  25. Lidstrom, M. E. ( 1988; ). Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek 54, 189–199.[CrossRef]
    [Google Scholar]
  26. Lipscomb, J. D. ( 1994; ). Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48, 371–399.[CrossRef]
    [Google Scholar]
  27. McLee, A. G., Kormendy, A. C. & Wayman, M. ( 1972; ). Isolation and characterization of n-butane-utilizing microorganisms. Can J Microbiol 18, 1191–1195.[CrossRef]
    [Google Scholar]
  28. Nelson, D. C., Waterbury, J. B. & Jannasch, H. W. ( 1982; ). Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol 133, 172–177.[CrossRef]
    [Google Scholar]
  29. Newman, L. M. & Wackett, L. P. ( 1995; ). Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34, 14066–14076.[CrossRef]
    [Google Scholar]
  30. Patel, R. N. ( 1987; ). Methane monooxygenase: purification and properties of flavoprotein component. Arch Biochem Biophys 252, 229–236.[CrossRef]
    [Google Scholar]
  31. Percival, M. D. ( 1991; ). Human 5-lipoxygenase contains an essential iron. J Biol Chem 266, 10058–10061.
    [Google Scholar]
  32. Perry, J. J. ( 1980; ). Propane utilization by microorganisms. Adv Appl Microbiol 26, 89–115.
    [Google Scholar]
  33. Sayavedra-Soto, L. A., Byrd, C. M. & Arp, D. J. ( 2001; ). Induction of butane consumption in Pseudomonas butanovora. Arch Microbiol 176, 114–120.[CrossRef]
    [Google Scholar]
  34. Sayavedra-Soto, L. A., Doughty, D. M., Kurth, E. G., Bottomley, P. J. & Arp, D. J. ( 2005; ). Product and product-independent induction of butane oxidation in Pseudomonas butanovora. FEMS Microbiol Lett 250, 111–116.[CrossRef]
    [Google Scholar]
  35. Shanklin, J., Achim, C., Schmidt, H., Fox, B. G. & Munck, E. ( 1997; ). Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 94, 2981–2986.[CrossRef]
    [Google Scholar]
  36. Shinohara, Y., Uchiyama, H., Yagi, O. & Kusukabe, I. ( 1998; ). Purification and characterization of component B of a soluble methane monooxygenase from Methylocystis sp. M. J Ferment Bioeng 85, 37–42.[CrossRef]
    [Google Scholar]
  37. Sluis, M. K., Sayavedra-Soto, L. A. & Arp, D. J. ( 2002; ). Molecular analysis of the soluble butane monooxygenase from ‘Pseudomonas butanovora. Microbiology 148, 3617–3629.
    [Google Scholar]
  38. Takahashi, J., Ichikawa, Y., Sagae, H., Komura, I., Kanou, H. & Yamada, K. ( 1980; ). Isolation and identification of n-butane-assimilating bacterium. Agric Biol Chem 44, 1835–1840.[CrossRef]
    [Google Scholar]
  39. van Beilen, J. B., Smits, T. H., Roos, F. F., Brunner, T., Balada, S. B., Rothlisberger, M. & Witholt, B. ( 2005; ). Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187, 85–91.[CrossRef]
    [Google Scholar]
  40. van Beilen, J. B., Funhoff, E. G., van Loon, A., Just, A., Kysser, L., Bouza, M., Holtackers, R., Rothlisberger, M., Li, Z. & Witholt, B. ( 2006; ). Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72, 59–65.[CrossRef]
    [Google Scholar]
  41. Wallar, B. J. & Lipscomb, J. D. ( 1996; ). Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev 96, 2625–2657.[CrossRef]
    [Google Scholar]
  42. Wiegant, W. W. & deBont, J. A. M. ( 1980; ). A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol 120, 325–331.
    [Google Scholar]
  43. Zhang, J. & Lipscomb, J. D. ( 2006; ). Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation. Biochemistry 45, 1459–1469.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004960-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004960-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1808 - 1816

Summary of the purification of butane monooxygenase components from ' [ PDF] (85 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error