1887

Abstract

Butane monooxygenase (sBMO) has been purified to homogeneity from the Gram-negative -proteobacterium ‘’ and confirmed to be a three-component diiron monooxygenase system. The reconstituted enzyme complex oxidized C–C linear and branched aliphatic alkanes, which are growth substrates for ‘’. The sBMO complex was composed of an iron-containing hydroxylase (BMOH), a flavo-iron sulfur-containing NADH-oxidoreductase (BMOR) and a small regulatory component protein (BMOB). The physical characteristics of sBMO were remarkably similar to the sMMO family of soluble multicomponent diiron monooxgenases. However, the catalytic properties of sBMO were quantitatively different in regard to inactivation in the presence of substrate and product distribution. BMOH was capable of ethene oxidation when supplied with HO and ethene (known as the peroxide shunt), but this activity was at least three orders of magnitude less than that observed for the hydroxylase of sMMO of OB3b. BMOH and BMOR were efficient in the oxidation of ethene in the absence of BMOB with regard to rate of reaction and product yield. Regiospecificity of sBMO was strongly biased towards primary hydroxylation, with ≥80 % of the hydroxylations occurring at the terminal carbon atom.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004960-0
2007-06-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1808.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004960-0&mimeType=html&fmt=ahah

References

  1. Andersson K. K., Froland W. A., Lee S. K., Lipscomb J. D.. 1991; Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component. N J Chem15:411–415
    [Google Scholar]
  2. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H.. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol50:1563–1589[CrossRef]
    [Google Scholar]
  3. Arp D. J.. 1999; Butane metabolism by butane-grown ‘ Pseudomonas butanovora ’ . Microbiology145:1173–1180[CrossRef]
    [Google Scholar]
  4. Ashraf W., Mihdhir A., Murrell J. C.. 1994; Bacterial oxidation of propane. FEMS Microbiol Lett122:1–6[CrossRef]
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein using the principal of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  6. Brandstetter H., Whittington D. A., Lippard S. J., Frederick C. A.. 1999; Mutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Chem Biol6:441–449[CrossRef]
    [Google Scholar]
  7. Brazeau B. J., Wallar B. J., Lipscomb J. D.. 2003; Effector proteins from P450(cam) and methane monooxygenase: lessons in tuning nature's powerful reagents. Biochem Biophys Res Commun312:143–148[CrossRef]
    [Google Scholar]
  8. Cadieux E., Vrajmasu V., Achim C., Powlowski J., Munck E.. 2002; Biochemical, Mossbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF 600. Biochemistry41:10680–10691[CrossRef]
    [Google Scholar]
  9. Chang S. L., Wallar B. J., Lipscomb J. D., Mayo K. H.. 1999; Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry38:5799–5812[CrossRef]
    [Google Scholar]
  10. Colby J., Dalton H.. 1979; Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath. Biochem J177:903–908
    [Google Scholar]
  11. Doughty D. M., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2005; Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium ‘ Pseudomonas butanovora ’. Appl Environ Microbiol71:6054–6059[CrossRef]
    [Google Scholar]
  12. Doughty D. M., Sayavedra-Soto L. A., Arp D. J., Bottomley P. J.. 2006; Product repression of alkane monooxygenase expression in Pseudomonas butanovora. J Bacteriol188:2586–2592[CrossRef]
    [Google Scholar]
  13. Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D.. 1989; Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem264:10023–10033
    [Google Scholar]
  14. Fox B. G., Froland W. A., Jollie D. R., Lipscomb J. D.. 1990; Methane monooxygenase from Methylosinus trichosporium OB3b. Methods Enzymol188:191–202
    [Google Scholar]
  15. Fox B. G., Liu Y., Dege J. E., Lipscomb J. D.. 1991; Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction. J Biol Chem266:540–550
    [Google Scholar]
  16. Froland W. A., Andersson K. K., Lee S. K., Liu Y., Lipscomb J. D.. 1992; Methane monooxygenase component-B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions – a novel role for protein-protein interactions in an oxygenase mechanism. J Biol Chem267:17588–17597
    [Google Scholar]
  17. Funhoff E. G., Bauer U., Garcia-Rubio I., Witholt B., van Beilen J. B.. 2006; CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol188:5220–5227[CrossRef]
    [Google Scholar]
  18. Green J., Dalton H.. 1985; Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath. J Biol Chem260:15795–15801
    [Google Scholar]
  19. Halsey K. H., Sayavedra-Soto L. A., Bottomley P. J., Arp D. J.. 2005; Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol68:794–801[CrossRef]
    [Google Scholar]
  20. Halsey K. H., Sayavedra-Soto L. A., Bottomley P. J., Arp D. J.. 2006; Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora : implications for substrates knocking at the gate. J Bacteriol188:4962–4969[CrossRef]
    [Google Scholar]
  21. Hamamura N., Page C., Long T., Semprini L., Arp D. J.. 1997; Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora , and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol63:3607–3613
    [Google Scholar]
  22. Hamamura N., Storfa R. T., Semprini L., Arp D. J.. 1999; Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol65:4586–4593
    [Google Scholar]
  23. Kopp D. A., Lippard S. J.. 2002; Soluble methane monooxygenase: activation of dioxygen and methane. Curr Opin Chem Biol6:568–576[CrossRef]
    [Google Scholar]
  24. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  25. Lidstrom M. E.. 1988; Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek54:189–199[CrossRef]
    [Google Scholar]
  26. Lipscomb J. D.. 1994; Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol48:371–399[CrossRef]
    [Google Scholar]
  27. McLee A. G., Kormendy A. C., Wayman M.. 1972; Isolation and characterization of n-butane-utilizing microorganisms. Can J Microbiol18:1191–1195[CrossRef]
    [Google Scholar]
  28. Nelson D. C., Waterbury J. B., Jannasch H. W.. 1982; Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol133:172–177[CrossRef]
    [Google Scholar]
  29. Newman L. M., Wackett L. P.. 1995; Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry34:14066–14076[CrossRef]
    [Google Scholar]
  30. Patel R. N.. 1987; Methane monooxygenase: purification and properties of flavoprotein component. Arch Biochem Biophys252:229–236[CrossRef]
    [Google Scholar]
  31. Percival M. D.. 1991; Human 5-lipoxygenase contains an essential iron. J Biol Chem266:10058–10061
    [Google Scholar]
  32. Perry J. J.. 1980; Propane utilization by microorganisms. Adv Appl Microbiol26:89–115
    [Google Scholar]
  33. Sayavedra-Soto L. A., Byrd C. M., Arp D. J.. 2001; Induction of butane consumption in Pseudomonas butanovora. Arch Microbiol176:114–120[CrossRef]
    [Google Scholar]
  34. Sayavedra-Soto L. A., Doughty D. M., Kurth E. G., Bottomley P. J., Arp D. J.. 2005; Product and product-independent induction of butane oxidation in Pseudomonas butanovora. FEMS Microbiol Lett250:111–116[CrossRef]
    [Google Scholar]
  35. Shanklin J., Achim C., Schmidt H., Fox B. G., Munck E.. 1997; Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A94:2981–2986[CrossRef]
    [Google Scholar]
  36. Shinohara Y., Uchiyama H., Yagi O., Kusukabe I.. 1998; Purification and characterization of component B of a soluble methane monooxygenase from Methylocystis sp. M. J Ferment Bioeng85:37–42[CrossRef]
    [Google Scholar]
  37. Sluis M. K., Sayavedra-Soto L. A., Arp D. J.. 2002; Molecular analysis of the soluble butane monooxygenase from ‘ Pseudomonas butanovora ’ . Microbiology148:3617–3629
    [Google Scholar]
  38. Takahashi J., Ichikawa Y., Sagae H., Komura I., Kanou H., Yamada K.. 1980; Isolation and identification of n -butane-assimilating bacterium. Agric Biol Chem44:1835–1840[CrossRef]
    [Google Scholar]
  39. van Beilen J. B., Smits T. H., Roos F. F., Brunner T., Balada S. B., Rothlisberger M., Witholt B.. 2005; Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol187:85–91[CrossRef]
    [Google Scholar]
  40. van Beilen J. B., Funhoff E. G., Just A., Kysser L., Bouza M., Holtackers R., Rothlisberger M., Li Z., Witholt B., van Loon A.. 2006; Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol72:59–65[CrossRef]
    [Google Scholar]
  41. Wallar B. J., Lipscomb J. D.. 1996; Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev96:2625–2657[CrossRef]
    [Google Scholar]
  42. Wiegant W. W., deBont J. A. M.. 1980; A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol120:325–331
    [Google Scholar]
  43. Zhang J., Lipscomb J. D.. 2006; Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation. Biochemistry45:1459–1469[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004960-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004960-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error