1887

Abstract

strain K8 was shown to produce a newly identified type AII lantibiotic, mutacin K8. The mutacin K8-encoding locus consists of 13 ORFs, three of which (, and ) have close homology to , the structural gene encoding the lantibiotic SA-FF22, and another (′) resembles ′, an ORF in the SA-FF22 locus that has no currently assigned function. Inactivation of the locus indicated that mutacin K8 is responsible for most of the inhibitory activity produced by strain K8 in deferred antagonism tests on Columbia blood agar base supplemented with 5 % human blood and 0.1 % CaCO. By contrast, on tryptic soy agar plus 2 % yeast extract and 0.5 % CaCO most of the inhibitory activity of strain K8 appeared to be attributable either to mutacin IV or to some other inhibitory peptide(s) exported by the mutacin IV transporter . An inhibitory peptide purified from a derivative of strain K8 in which had been inactivated had a mass of 2734 Da and an N-terminal sequence identical to the predicted propeptide translation products of and . The locus may be widely distributed in , since 9 (35 %) of 26 strains tested contained at least part of the locus. In the genome sequence of strain UA159 the locus is incomplete, the sole residual components being the ORFs encoding the putative two-component regulatory system (SMU.1815) and (SMU.1814), followed by two transposases (SMU.1813 and SMU.1812) and then the ORFs (SMU.1811), (SMU.1810) and (SMU.1809), thought to encode putative immunity peptides. Strains such as UA159 having incomplete loci did not produce detectable levels of mutacin K8.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003756-0
2007-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1631.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003756-0&mimeType=html&fmt=ahah

References

  1. Ajdic, D., McShan, W. M., McLaughlin, R. E., Savic, G., Chang, J., Carson, M. B., Primeaux, C., Tian, R., Kenton, S. & other authors ( 2002; ). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99, 14434–14439.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Bekal-Si Ali, S., Hurtubise, Y., Lavoie, M. C. & LaPointe, G. ( 2002; ). Diversity of Streptococcus mutans bacteriocins as confirmed by DNA analysis using specific molecular probes. Gene 283, 125–131.[CrossRef]
    [Google Scholar]
  4. Brehm, J., Salmond, G. & Minton, N. ( 1987; ). Sequence of the adenine methylase gene of the Streptococcus faecalis plasmid pAM beta 1. Nucleic Acids Res 15, 3177.[CrossRef]
    [Google Scholar]
  5. Caufield, P. W., Shah, G., Hollingshead, S. K., Parrot, M. & Lavoie, M. C. ( 1990; ). Evidence that mutacin II production is not mediated by a 5.6-kb plasmid in Streptococcus mutans. Plasmid 24, 110–118.[CrossRef]
    [Google Scholar]
  6. Cornett, J. B., Redman, B. E. & Shockman, G. D. ( 1978; ). Autolytic defective mutant of Streptococcus faecalis. J Bacteriol 133, 631–640.
    [Google Scholar]
  7. Crooks, M., James, S. M. & Tagg, J. R. ( 1987; ). Relationship of bacteriocin-like inhibitor production to the pigmentation and hemolytic activity of mutans streptococci. Zentralbl Bakteriol Mikrobiol Hyg [A] 263, 541–547.
    [Google Scholar]
  8. Gomez, A., Ladire, M., Marcille, F. & Fons, M. ( 2002; ). Trypsin mediates growth phase-dependent transcriptional regulation of genes involved in biosynthesis of ruminococcin A, a lantibiotic produced by a Ruminococcus gnavus strain from a human intestinal microbiota. J Bacteriol 184, 18–28.[CrossRef]
    [Google Scholar]
  9. Hale, J. D., Balakrishnan, M. & Tagg, J. R. ( 2004; ). Genetic basis for mutacin N and of its relationship to mutacin I. Indian J Med Res 119 (Suppl.), 247–251.
    [Google Scholar]
  10. Hale, J. D., Heng, N. C. K., Jack, R. W. & Tagg, J. R. ( 2005a; ). Identification of nlmTE, the locus encoding the ABC transport system required for export of non lantibiotic mutacins in Streptococcus mutans. J Bacteriol 187, 5036–5039.[CrossRef]
    [Google Scholar]
  11. Hale, J. D., Ting, Y. T., Jack, R. W., Tagg, J. R. & Heng, N. C. K. ( 2005b; ). Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol 71, 7613–7617.[CrossRef]
    [Google Scholar]
  12. Hillman, J. D., Novak, J., Sagura, E., Gutierrez, J. A., Brooks, T. A., Crowley, P. J., Hess, M., Azizi, A., Leung, K. & other authors ( 1998; ). Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 66, 2743–2749.
    [Google Scholar]
  13. Hubbard, M. J. & McHugh, N. J. ( 1996; ). Mitochondrial ATP synthase F1-β-subunit is a calcium-binding protein. FEBS Lett 391, 323–329.[CrossRef]
    [Google Scholar]
  14. Hubbard, M. J., McHugh, N. J. & Carne, D. L. ( 2000; ). Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells evidence for a unique role in secretory-protein synthesis. Eur J Biochem 267, 1945–1957.[CrossRef]
    [Google Scholar]
  15. Hynes, W. L., Friend, V. L. & Ferretti, J. J. ( 1994; ). Duplication of the lantibiotic structural gene in M-type 49 group A streptococcus strains producing streptococcin A-M49. Appl Environ Microbiol 60, 4207–4209.
    [Google Scholar]
  16. Jack, R. W. & Tagg, J. R. ( 1991; ). Isolation and partial structure of streptococcin A-FF22. In Nisin and Novel Lantibiotics, pp. 171–179. Edited by G. Jung & H.-G. Sahl. Leiden: Escom Publishers.
  17. Jack, R. W. & Tagg, J. R. ( 1992; ). Factors affecting production of the group A streptococcus bacteriocin SA-FF22. J Med Microbiol 36, 132–138.[CrossRef]
    [Google Scholar]
  18. Lau, P. C., Sung, C. K., Lee, J. H., Morrison, D. A. & Cvitkovitch, D. G. ( 2002; ). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49, 193–205.[CrossRef]
    [Google Scholar]
  19. McLaughlin, R. E., Ferretti, J. J. & Hynes, W. L. ( 1999; ). Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes. FEMS Microbiol Lett 175, 171–177.[CrossRef]
    [Google Scholar]
  20. Parrot, M., Charest, M. & Lavoie, M. C. ( 1989; ). Production of mutacin-like substances by Streptococcus mutans. Can J Microbiol 35, 366–372.[CrossRef]
    [Google Scholar]
  21. Qi, F., Chen, P. & Caufield, P. W. ( 2001; ). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67, 15–21.[CrossRef]
    [Google Scholar]
  22. Simpson, W. J., Ragland, N. L., Ronson, C. W. & Tagg, J. R. ( 1995; ). A lantibiotic gene family widely distributed in Streptococcus salivarius and Streptococcus pyogenes. Dev Biol Stand 85, 639–643.
    [Google Scholar]
  23. Tagg, J. R. & Bannister, L. V. ( 1979; ). “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol 12, 397–411.[CrossRef]
    [Google Scholar]
  24. Tagg, J. R. & Wannamaker, L. W. ( 1976; ). Genetic basis of streptococcin A-FF22 production. Antimicrob Agents Chemother 10, 299–306.[CrossRef]
    [Google Scholar]
  25. Tagg, J. R. & Wannamaker, L. W. ( 1978; ). Streptococcin A-FF22: nisin-like antibiotic substance produced by a group A streptococcus. Antimicrob Agents Chemother 14, 31–39.[CrossRef]
    [Google Scholar]
  26. Tagg, J. R., Dajani, A. S., Wannamaker, L. W. & Gray, E. D. ( 1973a; ). Group A streptococcal bacteriocin. Production, purification, and mode of action. J Exp Med 138, 1168–1183.[CrossRef]
    [Google Scholar]
  27. Tagg, J. R., Read, R. S. D. & McGiven, A. R. ( 1973b; ). Bacteriocin of a group A streptococcus: partial purification and properties. Antimicrob Agents Chemother 4, 214–221.[CrossRef]
    [Google Scholar]
  28. Upton, M., Tagg, J. R., Wescombe, P. & Jenkinson, H. F. ( 2001; ). Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183, 3931–3938.[CrossRef]
    [Google Scholar]
  29. Wescombe, P. A. ( 2002; ). Characterisation of lantibiotics produced by Streptococcus salivarius and Streptococcus pyogenes. PhD thesis, Department of Microbiology and Immunology, Dunedin University of Otago.
  30. Wescombe, P. A., Upton, M., Dierksen, K. P., Ragland, N. L., Sivabalan, S., Wirawan, R. E., Inglis, M. A., Moore, C. J., Walker, G. V. & other authors ( 2006; ). Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72, 1459–1466.[CrossRef]
    [Google Scholar]
  31. Wirawan, R. E., Klesse, N. A., Jack, R. W. & Tagg, J. R. ( 2006; ). Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 72, 1148–1156.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003756-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003756-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error