1887

Abstract

Results of previous immunological studies suggested that regulates synthesis of the IpLA7 lipoprotein during mammalian infection. Through combined use of quantitative reverse transcription PCR, immunofluorescence analyses, ELISA and immunoblotting, it is now demonstrated that IpLA7 is actually expressed throughout mammalian infection, as well as during transmission both from feeding ticks to naïve mice and from infected mice to naïve, feeding ticks. However, proportions of IpLA7-expressing within tick midguts declined significantly with time following completion of blood feeding. Cultured bacteria differentially expressed IpLA7 in response to changes in temperature, pH and concentration of 4,5-dihydroxy-2,3-pentanedione, the precursor of autoinducer 2, indicative of mechanisms governing IpLA7 expression. Previous studies also reported mixed results as to the cellular localization of IpLA7. It is now demonstrated that IpLA7 localizes primarily to the borrelial inner membrane and is not surface-exposed, consistent with the ability of these bacteria to produce IpLA7 throughout mammalian infection despite being the target of a robust immune response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003350-0
2007-05-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1361.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003350-0&mimeType=html&fmt=ahah

References

  1. Babb, K., von Lackum, K., Wattier, R. L., Riley, S. P. & Stevenson, B. ( 2005; ). Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187, 3079–3087.[CrossRef]
    [Google Scholar]
  2. Babb, K., Bykowski, T., Riley, S. P., Miller, M. C., DeMoll, E. & Stevenson, B. ( 2006; ). Borrelia burgdorferi EbfC, a novel, chromosomally-encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete's resident cp32 prophages. J Bacteriol 188, 4331–4339.[CrossRef]
    [Google Scholar]
  3. Balashov, Y. S. ( 1972; ). Bloodsucking ticks (Ixodoidea) – vectors of diseases of man and animals. In Miscellaneous Publications of the Entomological Society of America, vol. 8, pp. 161–376. Lanham, MD: Entomological Society of America.
  4. Barbour, A. G. ( 1984; ). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57, 521–525.
    [Google Scholar]
  5. Barbour, A. G., Tessier, S. L. & Todd, W. J. ( 1983; ). Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41, 795–804.
    [Google Scholar]
  6. Barbour, A. G., Hayes, S. F., Heiland, R. A., Schrumpf, M. E. & Tessier, S. L. ( 1986; ). A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52, 549–554.
    [Google Scholar]
  7. Bassler, B. L., Wright, M. & Silverman, M. R. ( 1994; ). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13, 273–286.[CrossRef]
    [Google Scholar]
  8. Bassler, B. L., Greenberg, E. P. & Stevens, A. M. ( 1997; ). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179, 4043–4045.
    [Google Scholar]
  9. Bono, J. L., Tilly, K., Stevenson, B., Hogan, D. & Rosa, P. ( 1998; ). Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology 144, 1033–1044.[CrossRef]
    [Google Scholar]
  10. Bunikis, J. & Barbour, A. G. ( 1999; ). Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun 67, 2874–2883.
    [Google Scholar]
  11. Bykowski, T., Babb, K., von Lackum, K., Riley, S. P., Norris, S. J. & Stevenson, B. ( 2006; ). Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein. J Bacteriol 188, 4879–4889.[CrossRef]
    [Google Scholar]
  12. Caimano, M. J., Eggers, C. H., Hazlett, K. R. O. & Radolf, J. D. ( 2004; ). RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72, 6433–6445.[CrossRef]
    [Google Scholar]
  13. Carroll, J. A. & Gherardini, F. C. ( 1996; ). Membrane protein variations associated with in vitro passage of Borrelia burgdorferi. Infect Immun 64, 392–398.
    [Google Scholar]
  14. Carroll, J. A., Garon, C. F. & Schwan, T. G. ( 1999; ). Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun 67, 3181–3187.
    [Google Scholar]
  15. Carroll, J. A., El-Hage, N., Miller, J. C., Babb, K. & Stevenson, B. ( 2001; ). Borrelia burgdorferi RevA antigen is a surface-exposed outer membrane protein whose expression is regulated in response to environmental temperature and pH. Infect Immun 69, 5286–5293.[CrossRef]
    [Google Scholar]
  16. Casjens, S., DeLange, M., Ley, H. L., III, Rosa, P. & Huang, W. M. ( 1995; ). Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order. J Bacteriol 177, 2769–2780.
    [Google Scholar]
  17. Casjens, S., van Vugt, R., Tilly, K., Rosa, P. A. & Stevenson, B. ( 1997; ). Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol 179, 217–227.
    [Google Scholar]
  18. Casjens, S., Palmer, N., van Vugt, R., Huang, W. M., Stevenson, B., Rosa, P., Lathigra, R., Sutton, G., Peterson, J. & other authors ( 2000; ). A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35, 490–516.
    [Google Scholar]
  19. Cha, J. Y., Ishiwata, A. & Mobashery, S. ( 2004; ). A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem 279, 14917–14921.[CrossRef]
    [Google Scholar]
  20. Crother, T. R., Champion, C. I., Wu, X.-Y., Blanco, D. R., Miller, J. N. & Lovett, M. A. ( 2003; ). Antigenic composition of Borrelia burgdorferi during infection of SCID mice. Infect Immun 71, 3419–3428.[CrossRef]
    [Google Scholar]
  21. Crother, T. R., Champion, C. I., Whitelegge, J. P., Aguilera, R., Wu, X. Y., Blanco, D. R., Miller, J. N. & Lovett, M. A. ( 2004; ). Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun 72, 5063–5072.[CrossRef]
    [Google Scholar]
  22. Deka, R. K., Machius, M., Norgard, M. V. & Tomchick, D. R. ( 2002; ). Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem 277, 41857–41864.[CrossRef]
    [Google Scholar]
  23. de Souza, M. S., Smith, A. L., Beck, D. S., Kim, L. J., Hansen, G. M. & Barthold, S. W. ( 1993; ). Variant responses of mice to Borrelia burgdorferi depending on the site of intradermal inoculation. Infect Immun 61, 4493–4497.
    [Google Scholar]
  24. El-Hage, N., Babb, K., Carroll, J. A., Lindstrom, N., Fischer, E. R., Miller, J. C., Gilmore, R. D., Jr, Mbow, M. L. & Stevenson, B. ( 2001; ). Surface exposure and protease insensitivity of Borrelia burgdorferi Erp (OspEF-related) lipoproteins. Microbiology 147, 821–830.
    [Google Scholar]
  25. Elias, A. F., Stewart, P. E., Grimm, D., Caimano, M. J., Eggers, C. H., Tilly, K., Bono, J. L., Akins, D. R., Radolf, J. D. & other authors ( 2002; ). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70, 2139–2150.[CrossRef]
    [Google Scholar]
  26. Filipek, R., Szczepanowski, R., Sabat, A., Potempa, J. & Bochtler, M. ( 2004; ). Prostaphopain B structure: a comparison of proregion-mediated and staphostatin-mediated protease inhibition. Biochemistry 43, 14306–14315.[CrossRef]
    [Google Scholar]
  27. Fisher, M. A., Grimm, D., Henion, A. K., Elias, A. F., Stewart, P. E., Rosa, P. A. & Gherardini, F. C. ( 2005; ). Borrelia burgdorferi σ 54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102, 5162–5167.[CrossRef]
    [Google Scholar]
  28. Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R. & other authors ( 1997; ). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586.[CrossRef]
    [Google Scholar]
  29. Glöckner, G., Lehmann, R., Romualdi, A., Pradella, S., Schulte-Spechtel, U., Schilhabel, M., Wilske, B., Sühnel, J. & Platzer, M. ( 2004; ). Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res 32, 6038–6046.[CrossRef]
    [Google Scholar]
  30. Glöckner, G., Schulte-Spechtel, U., Schilhabel, M., Felder, M., Suehnel, J., Wilske, B. & Platzer, M. ( 2006; ). Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. BMC Genomics 7, 211.[CrossRef]
    [Google Scholar]
  31. Grewe, C. & Nuske, J. H. ( 1996; ). Immunolocalization of a 22 kDa protein (IPLA7, P22) of Borrelia burgdorferi. FEMS Microbiol Lett 138, 215–219.
    [Google Scholar]
  32. Hübner, A., Yang, X., Nolen, D. M., Popova, T. G., Cabello, P. C. & Norgard, M. V. ( 2001; ). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98, 12724–12729.[CrossRef]
    [Google Scholar]
  33. Hübner, A., Revel, A. T., Nolen, D. M., Hagman, K. E. & Norgard, M. V. ( 2003; ). Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71, 2892–2896.[CrossRef]
    [Google Scholar]
  34. Lam, T. T., Nguyen, T.-P. K., Fikrig, E. & Flavell, R. A. ( 1994; ). A chromosomal Borrelia burgdorferi gene encodes a 22-kilodalton lipoprotein, P22, that is serologically recognized in Lyme disease. J Clin Microbiol 32, 876–883.
    [Google Scholar]
  35. LeFebvre, R. B., Probert, W. S. & Perng, G.-C. ( 1993; ). Characterization of a chromosomal gene and the antigen it expresses from the Lyme disease agent, Borrelia burgdorferi. J Clin Microbiol 31, 2146–2151.
    [Google Scholar]
  36. Mbow, M. L., Gilmore, R. D., Jr, Stevenson, B., Golde, W. T., Piesman, J. & Johnson, B. J. B. ( 2002; ). Borrelia burgdorferi-specific monoclonal antibodies derived from mice primed with Lyme disease spirochete-infected Ixodes scapularis ticks. Hybrid Hybridomics 21, 179–182.[CrossRef]
    [Google Scholar]
  37. Miller, J. C. ( 2005; ). Example of real-time quantitative reverse transcription-PCR (Q-RT-PCR) analysis of bacterial gene expression during mammalian infection: Borrelia burgdorferi in mouse tissues. In Current Protocols In Microbiology, pp. 1D.3. Edited by R. T. Coico, T. F. Kowalik, J. Quarles, B. Stevenson & R. Taylor. Hoboken, NJ: Wiley.
  38. Miller, J. C., von Lackum, K., Babb, K., McAlister, J. D. & Stevenson, B. ( 2003; ). Temporal analysis of Borrelia burgdorferi Erp protein expression throughout the mammal-tick infectious cycle. Infect Immun 71, 6943–6952.[CrossRef]
    [Google Scholar]
  39. Narasimhan, S., Santiago, F., Koski, R. A., Brei, B., Anderson, J. F., Fish, D. & Fikrig, E. ( 2002; ). Examination of the Borrelia burgdorferi transcriptome in Ixodes scapularis during feeding. J Bacteriol 184, 3122–3125.[CrossRef]
    [Google Scholar]
  40. Noppa, L., Östberg, Y., Lavrinovicha, M. & Bergström, S. ( 2001; ). P13, an integral outer membrane protein of Borrelai burgdorferi, is C-terminally processed and contains surface-exposed domains. Infect Immun 69, 3323–3334.[CrossRef]
    [Google Scholar]
  41. Nowalk, A. J., Gilmore, R. D., Jr & Carroll, J. A. ( 2006a; ). Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect Immun 74, 3864–3873.[CrossRef]
    [Google Scholar]
  42. Nowalk, A. J., Nolder, C., Clifton, D. R. & Carroll, J. A. ( 2006b; ). Comparative proteome analysis of subcellular fractions from Borrelia burgdorferi by NEPHGE and IPG. Proteomics 6, 2121–2134.[CrossRef]
    [Google Scholar]
  43. Ojaimi, C., Brooks, C., Casjens, S., Rosa, P., Elias, A., Barbour, A., Jasinskas, A., Benach, J., Katona, L. & other authors ( 2003; ). Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect Immun 71, 1689–1705.[CrossRef]
    [Google Scholar]
  44. Rauer, S., Wallich, R. & Neubert, U. ( 2001; ). Recombinant low-molecular-mass proteins pG and LA7 from Borrelia burgdorferi reveal low diagnostic sensitivity in an enzyme-linked immunosorbent assay. J Clin Microbiol 39, 2039–2040.[CrossRef]
    [Google Scholar]
  45. Revel, A. T., Talaat, A. M. & Norgard, M. V. ( 2002; ). DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A 99, 1562–1567.[CrossRef]
    [Google Scholar]
  46. Rossmann, E., Kitiratschky, V., Hofmann, H., Kraiczy, P., Simon, M. M. & Wallich, R. ( 2006; ). Borrelia burgdorferi complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes is expressed in humans and induces antibody responses restricted to nondenatured structural determinants. Infect Immun 74, 7024–7028.[CrossRef]
    [Google Scholar]
  47. Sadziene, A., Wilske, B., Ferdows, M. S. & Barbour, A. G. ( 1993; ). The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect Immun 61, 2192–2195.
    [Google Scholar]
  48. Sadziene, A., Thomas, D. D. & Barbour, A. G. ( 1995; ). Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect Immun 63, 1573–1580.
    [Google Scholar]
  49. Sauer, J. R., McSwain, J. L., Bowman, A. S. & Essenberg, R. C. ( 1995; ). Tick salivary gland physiology. Annu Rev Entomol 40, 245–267.[CrossRef]
    [Google Scholar]
  50. Schaible, U. E., Gern, L., Wallich, R., Kramer, M. D., Prester, M. & Simon, M. M. ( 1993; ). Distinct patterns of protective antibodies are generated against Borrelia burgdorferi in mice experimentally inoculated with high and low doses of antigen. Immunol Lett 36, 219–226.[CrossRef]
    [Google Scholar]
  51. Schauder, S., Shokat, S., Surette, M. G. & Bassler, B. L. ( 2001; ). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41, 463–476.[CrossRef]
    [Google Scholar]
  52. Schulze, R. J. & Zückert, W. R. ( 2006; ). Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol 59, 1473–1484.[CrossRef]
    [Google Scholar]
  53. Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. ( 1995; ). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92, 2909–2913.[CrossRef]
    [Google Scholar]
  54. Simpson, W. J., Schrumpf, M. E., Hayes, S. F. & Schwan, T. G. ( 1991; ). Molecular and immunological analysis of a polymorphic periplasmic protein of Borrelia burgdorferi. J Clin Microbiol 29, 1940–1948.
    [Google Scholar]
  55. Skare, J. T., Shang, E. S., Foley, D. M., Blanco, D. R., Champion, C. I., Mirzabekov, T., Sokolov, Y., Kagan, B. L., Miller, J. N. & other authors ( 1995; ). Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest 96, 2380–2392.[CrossRef]
    [Google Scholar]
  56. Steere, A. C., Grodzicki, R. L., Kornblatt, A. N., Craft, J. E., Barbour, A. G., Burgdorfer, W., Schmid, G. P., Johnson, E. & Malawista, S. E. ( 1983; ). The spirochetal etiology of Lyme disease. N Engl J Med 308, 733–740.[CrossRef]
    [Google Scholar]
  57. Stevenson, B. & Babb, K. ( 2002; ). LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70, 4099–4105.[CrossRef]
    [Google Scholar]
  58. Stevenson, B., Schwan, T. G. & Rosa, P. A. ( 1995; ). Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63, 4535–4539.
    [Google Scholar]
  59. Stevenson, B., von Lackum, K., Wattier, R. L., McAlister, J. D., Miller, J. C. & Babb, K. ( 2003; ). Quorum sensing by the Lyme disease spirochete. Microbes Infect 5, 991–997.[CrossRef]
    [Google Scholar]
  60. Stevenson, B., von Lackum, K., Riley, S. P., Cooley, A. E., Woodman, M. E. & Bykowski, T. ( 2006; ). Evolving models of Lyme disease spirochete gene regulation. Wien Klin Wochenschr 118, 643–652.[CrossRef]
    [Google Scholar]
  61. Taga, M. E. ( 2005; ). Methods for analysis of bacterial autoinducer-2 production. In Current Protocols In Microbiology, pp. 1C.1. Edited by R. T. Coico, T. F. Kowalik, J. Quarles, B. Stevenson & R. Taylor. Hoboken, NJ: Wiley.
  62. Taga, M. E., Semmelhack, J. L. & Bassler, B. L. ( 2001; ). The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol 42, 777–793.
    [Google Scholar]
  63. von Lackum, K., Miller, J. C., Bykowski, T., Riley, S. P., Woodman, M. E., Brade, V., Kraiczy, P., Stevenson, B. & Wallich, R. ( 2005; ). Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun 73, 7398–7405.[CrossRef]
    [Google Scholar]
  64. von Lackum, K., Babb, K., Riley, S. P., Wattier, R. L., Bykowski, T. & Stevenson, B. ( 2006; ). Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2, and lacks a complete activated-methyl cycle. Int J Med Microbiol 296 (S1), 92–102.
    [Google Scholar]
  65. Wallich, R., Simon, M. M., Hofmann, H., Moter, S. E., Schaible, U. E. & Kramer, M. D. ( 1993; ). Molecular and immunological characterization of a novel polymorphic lipoprotein of Borrelia burgdorferi. Infect Immun 61, 4158–4166.
    [Google Scholar]
  66. Xavier, K. B. & Bassler, B. L. ( 2003; ). LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6, 191–197.[CrossRef]
    [Google Scholar]
  67. Yang, X., Goldberg, M. S., Popova, T. G., Schoeler, G. B., Wikel, S. K., Hagman, K. E. & Norgard, M. V. ( 2000; ). Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37, 1470–1479.[CrossRef]
    [Google Scholar]
  68. Yang, X. F., Lybecker, M. C., Pal, U., Alani, S. M., Blevins, J., Revel, A. T., Samuels, D. S. & Norgard, M. V. ( 2005; ). Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol 187, 4822–4829.[CrossRef]
    [Google Scholar]
  69. Zückert, W. R., Meyer, J. & Barbour, A. G. ( 1999; ). Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun 67, 3257–3266.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003350-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003350-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error