1887

Abstract

Results of previous immunological studies suggested that regulates synthesis of the IpLA7 lipoprotein during mammalian infection. Through combined use of quantitative reverse transcription PCR, immunofluorescence analyses, ELISA and immunoblotting, it is now demonstrated that IpLA7 is actually expressed throughout mammalian infection, as well as during transmission both from feeding ticks to naïve mice and from infected mice to naïve, feeding ticks. However, proportions of IpLA7-expressing within tick midguts declined significantly with time following completion of blood feeding. Cultured bacteria differentially expressed IpLA7 in response to changes in temperature, pH and concentration of 4,5-dihydroxy-2,3-pentanedione, the precursor of autoinducer 2, indicative of mechanisms governing IpLA7 expression. Previous studies also reported mixed results as to the cellular localization of IpLA7. It is now demonstrated that IpLA7 localizes primarily to the borrelial inner membrane and is not surface-exposed, consistent with the ability of these bacteria to produce IpLA7 throughout mammalian infection despite being the target of a robust immune response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003350-0
2007-05-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1361.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003350-0&mimeType=html&fmt=ahah

References

  1. Babb K., von Lackum K., Wattier R. L., Riley S. P., Stevenson B.. 2005; Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol187:3079–3087[CrossRef]
    [Google Scholar]
  2. Babb K., Bykowski T., Riley S. P., Miller M. C., DeMoll E., Stevenson B.. 2006; Borrelia burgdorferi EbfC, a novel, chromosomally-encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete's resident cp32 prophages. J Bacteriol188:4331–4339[CrossRef]
    [Google Scholar]
  3. Balashov Y. S.. 1972; Bloodsucking ticks (Ixodoidea) – vectors of diseases of man and animals. In Miscellaneous Publications of the Entomological Society of America vol. 8 pp161–376 Lanham, MD: Entomological Society of America;
    [Google Scholar]
  4. Barbour A. G.. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med57:521–525
    [Google Scholar]
  5. Barbour A. G., Tessier S. L., Todd W. J.. 1983; Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun41:795–804
    [Google Scholar]
  6. Barbour A. G., Hayes S. F., Heiland R. A., Schrumpf M. E., Tessier S. L.. 1986; A Borrelia -specific monoclonal antibody binds to a flagellar epitope. Infect Immun52:549–554
    [Google Scholar]
  7. Bassler B. L., Wright M., Silverman M. R.. 1994; Multiple signalling systems controlling expression of luminescence in Vibrio harveyi : sequence and function of genes encoding a second sensory pathway. Mol Microbiol13:273–286[CrossRef]
    [Google Scholar]
  8. Bassler B. L., Greenberg E. P., Stevens A. M.. 1997; Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol179:4043–4045
    [Google Scholar]
  9. Bono J. L., Tilly K., Stevenson B., Hogan D., Rosa P.. 1998; Oligopeptide permease in Borrelia burgdorferi : putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology144:1033–1044[CrossRef]
    [Google Scholar]
  10. Bunikis J., Barbour A. G.. 1999; Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun67:2874–2883
    [Google Scholar]
  11. Bykowski T., Babb K., von Lackum K., Riley S. P., Norris S. J., Stevenson B.. 2006; Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein. J Bacteriol188:4879–4889[CrossRef]
    [Google Scholar]
  12. Caimano M. J., Eggers C. H., Hazlett K. R. O., Radolf J. D.. 2004; RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun72:6433–6445[CrossRef]
    [Google Scholar]
  13. Carroll J. A., Gherardini F. C.. 1996; Membrane protein variations associated with in vitro passage of Borrelia burgdorferi. Infect Immun64:392–398
    [Google Scholar]
  14. Carroll J. A., Garon C. F., Schwan T. G.. 1999; Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun67:3181–3187
    [Google Scholar]
  15. Carroll J. A., El-Hage N., Miller J. C., Babb K., Stevenson B.. 2001; Borrelia burgdorferi RevA antigen is a surface-exposed outer membrane protein whose expression is regulated in response to environmental temperature and pH. Infect Immun69:5286–5293[CrossRef]
    [Google Scholar]
  16. Casjens S., DeLange M., Ley H. L., III, Rosa P., Huang W. M.. 1995; Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order. J Bacteriol177:2769–2780
    [Google Scholar]
  17. Casjens S., van Vugt R., Tilly K., Rosa P. A., Stevenson B.. 1997; Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol179:217–227
    [Google Scholar]
  18. Casjens S., Palmer N., van Vugt R., Huang W. M., Stevenson B., Rosa P., Lathigra R., Sutton G., Peterson J.. other authors 2000; A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol35:490–516
    [Google Scholar]
  19. Cha J. Y., Ishiwata A., Mobashery S.. 2004; A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem279:14917–14921[CrossRef]
    [Google Scholar]
  20. Crother T. R., Champion C. I., Wu X.-Y., Blanco D. R., Miller J. N., Lovett M. A.. 2003; Antigenic composition of Borrelia burgdorferi during infection of SCID mice. Infect Immun71:3419–3428[CrossRef]
    [Google Scholar]
  21. Crother T. R., Champion C. I., Whitelegge J. P., Aguilera R., Wu X. Y., Blanco D. R., Miller J. N., Lovett M. A.. 2004; Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun72:5063–5072[CrossRef]
    [Google Scholar]
  22. Deka R. K., Machius M., Norgard M. V., Tomchick D. R.. 2002; Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem277:41857–41864[CrossRef]
    [Google Scholar]
  23. de Souza M. S., Smith A. L., Beck D. S., Kim L. J., Hansen G. M., Barthold S. W.. 1993; Variant responses of mice to Borrelia burgdorferi depending on the site of intradermal inoculation. Infect Immun61:4493–4497
    [Google Scholar]
  24. El-Hage N., Babb K., Carroll J. A., Lindstrom N., Fischer E. R., Miller J. C., Mbow M. L., Stevenson B., Gilmore R. D., Jr.. 2001; Surface exposure and protease insensitivity of Borrelia burgdorferi Erp (OspEF-related) lipoproteins. Microbiology147:821–830
    [Google Scholar]
  25. Elias A. F., Stewart P. E., Grimm D., Caimano M. J., Eggers C. H., Tilly K., Bono J. L., Akins D. R., Radolf J. D.. other authors 2002; Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun70:2139–2150[CrossRef]
    [Google Scholar]
  26. Filipek R., Szczepanowski R., Sabat A., Potempa J., Bochtler M.. 2004; Prostaphopain B structure: a comparison of proregion-mediated and staphostatin-mediated protease inhibition. Biochemistry43:14306–14315[CrossRef]
    [Google Scholar]
  27. Fisher M. A., Grimm D., Henion A. K., Elias A. F., Stewart P. E., Rosa P. A., Gherardini F. C.. 2005; Borrelia burgdorferi σ 54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A102:5162–5167[CrossRef]
    [Google Scholar]
  28. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R.. other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature390:580–586[CrossRef]
    [Google Scholar]
  29. Glöckner G., Lehmann R., Romualdi A., Pradella S., Schulte-Spechtel U., Schilhabel M., Wilske B., Platzer M., Sühnel J.. 2004; Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res32:6038–6046[CrossRef]
    [Google Scholar]
  30. Glöckner G., Schulte-Spechtel U., Schilhabel M., Felder M., Suehnel J., Wilske B., Platzer M.. 2006; Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. BMC Genomics7:211[CrossRef]
    [Google Scholar]
  31. Grewe C., Nuske J. H.. 1996; Immunolocalization of a 22 kDa protein (IPLA7, P22) of Borrelia burgdorferi. FEMS Microbiol Lett138:215–219
    [Google Scholar]
  32. Hübner A., Yang X., Nolen D. M., Popova T. G., Cabello P. C., Norgard M. V.. 2001; Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A98:12724–12729[CrossRef]
    [Google Scholar]
  33. Hübner A., Revel A. T., Nolen D. M., Hagman K. E., Norgard M. V.. 2003; Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun71:2892–2896[CrossRef]
    [Google Scholar]
  34. Lam T. T., Nguyen T.-P. K., Fikrig E., Flavell R. A.. 1994; A chromosomal Borrelia burgdorferi gene encodes a 22-kilodalton lipoprotein, P22, that is serologically recognized in Lyme disease. J Clin Microbiol32:876–883
    [Google Scholar]
  35. LeFebvre R. B., Probert W. S., Perng G.-C.. 1993; Characterization of a chromosomal gene and the antigen it expresses from the Lyme disease agent, Borrelia burgdorferi. J Clin Microbiol31:2146–2151
    [Google Scholar]
  36. Mbow M. L., Stevenson B., Golde W. T., Piesman J., Johnson B. J. B., Gilmore R. D., Jr.. 2002; Borrelia burgdorferi -specific monoclonal antibodies derived from mice primed with Lyme disease spirochete-infected Ixodes scapularis ticks. Hybrid Hybridomics21:179–182[CrossRef]
    [Google Scholar]
  37. Miller J. C.. 2005; Example of real-time quantitative reverse transcription-PCR (Q-RT-PCR) analysis of bacterial gene expression during mammalian infection: Borrelia burgdorferi in mouse tissues. In Current Protocols In Microbiology pp1D–3 Edited by Coico R. T., Kowalik T. F., Quarles J., Stevenson B., Taylor R.. Hoboken, NJ: Wiley;
    [Google Scholar]
  38. Miller J. C., von Lackum K., Babb K., McAlister J. D., Stevenson B.. 2003; Temporal analysis of Borrelia burgdorferi Erp protein expression throughout the mammal-tick infectious cycle. Infect Immun71:6943–6952[CrossRef]
    [Google Scholar]
  39. Narasimhan S., Santiago F., Koski R. A., Brei B., Anderson J. F., Fish D., Fikrig E.. 2002; Examination of the Borrelia burgdorferi transcriptome in Ixodes scapularis during feeding. J Bacteriol184:3122–3125[CrossRef]
    [Google Scholar]
  40. Noppa L., Lavrinovicha M., Östberg Y., Bergström S.. 2001; P13, an integral outer membrane protein of Borrelai burgdorferi , is C-terminally processed and contains surface-exposed domains. Infect Immun69:3323–3334[CrossRef]
    [Google Scholar]
  41. Nowalk A. J., Carroll J. A., Gilmore R. D. Jr. 2006a; Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect Immun74:3864–3873[CrossRef]
    [Google Scholar]
  42. Nowalk A. J., Nolder C., Clifton D. R., Carroll J. A.. 2006b; Comparative proteome analysis of subcellular fractions from Borrelia burgdorferi by NEPHGE and IPG. Proteomics6:2121–2134[CrossRef]
    [Google Scholar]
  43. Ojaimi C., Brooks C., Casjens S., Rosa P., Elias A., Barbour A., Jasinskas A., Benach J., Katona L.. other authors 2003; Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect Immun71:1689–1705[CrossRef]
    [Google Scholar]
  44. Rauer S., Wallich R., Neubert U.. 2001; Recombinant low-molecular-mass proteins pG and LA7 from Borrelia burgdorferi reveal low diagnostic sensitivity in an enzyme-linked immunosorbent assay. J Clin Microbiol39:2039–2040[CrossRef]
    [Google Scholar]
  45. Revel A. T., Talaat A. M., Norgard M. V.. 2002; DNA microarray analysis of differential gene expression in Borrelia burgdorferi , the Lyme disease spirochete. Proc Natl Acad Sci U S A99:1562–1567[CrossRef]
    [Google Scholar]
  46. Rossmann E., Kitiratschky V., Hofmann H., Kraiczy P., Simon M. M., Wallich R.. 2006; Borrelia burgdorferi complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes is expressed in humans and induces antibody responses restricted to nondenatured structural determinants. Infect Immun74:7024–7028[CrossRef]
    [Google Scholar]
  47. Sadziene A., Wilske B., Ferdows M. S., Barbour A. G.. 1993; The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect Immun61:2192–2195
    [Google Scholar]
  48. Sadziene A., Thomas D. D., Barbour A. G.. 1995; Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect Immun63:1573–1580
    [Google Scholar]
  49. Sauer J. R., McSwain J. L., Bowman A. S., Essenberg R. C.. 1995; Tick salivary gland physiology. Annu Rev Entomol40:245–267[CrossRef]
    [Google Scholar]
  50. Schaible U. E., Gern L., Wallich R., Kramer M. D., Prester M., Simon M. M.. 1993; Distinct patterns of protective antibodies are generated against Borrelia burgdorferi in mice experimentally inoculated with high and low doses of antigen. Immunol Lett36:219–226[CrossRef]
    [Google Scholar]
  51. Schauder S., Shokat S., Surette M. G., Bassler B. L.. 2001; The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol41:463–476[CrossRef]
    [Google Scholar]
  52. Schulze R. J., Zückert W. R.. 2006; Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol59:1473–1484[CrossRef]
    [Google Scholar]
  53. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A.. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A92:2909–2913[CrossRef]
    [Google Scholar]
  54. Simpson W. J., Schrumpf M. E., Hayes S. F., Schwan T. G.. 1991; Molecular and immunological analysis of a polymorphic periplasmic protein of Borrelia burgdorferi. J Clin Microbiol29:1940–1948
    [Google Scholar]
  55. Skare J. T., Shang E. S., Foley D. M., Blanco D. R., Champion C. I., Mirzabekov T., Sokolov Y., Kagan B. L., Miller J. N.. other authors 1995; Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest96:2380–2392[CrossRef]
    [Google Scholar]
  56. Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., Schmid G. P., Johnson E., Malawista S. E.. 1983; The spirochetal etiology of Lyme disease. N Engl J Med308:733–740[CrossRef]
    [Google Scholar]
  57. Stevenson B., Babb K.. 2002; LuxS-mediated quorum sensing in Borrelia burgdorferi , the Lyme disease spirochete. Infect Immun70:4099–4105[CrossRef]
    [Google Scholar]
  58. Stevenson B., Schwan T. G., Rosa P. A.. 1995; Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun63:4535–4539
    [Google Scholar]
  59. Stevenson B., von Lackum K., Wattier R. L., McAlister J. D., Miller J. C., Babb K.. 2003; Quorum sensing by the Lyme disease spirochete. Microbes Infect5:991–997[CrossRef]
    [Google Scholar]
  60. Stevenson B., von Lackum K., Riley S. P., Cooley A. E., Woodman M. E., Bykowski T.. 2006; Evolving models of Lyme disease spirochete gene regulation. Wien Klin Wochenschr118:643–652[CrossRef]
    [Google Scholar]
  61. Taga M. E.. 2005; Methods for analysis of bacterial autoinducer-2 production. In Current Protocols In Microbiology pp1C–1 Edited by Coico R. T., Kowalik T. F., Quarles J., Stevenson B., Taylor R.. Hoboken, NJ: Wiley;
    [Google Scholar]
  62. Taga M. E., Semmelhack J. L., Bassler B. L.. 2001; The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol42:777–793
    [Google Scholar]
  63. von Lackum K., Miller J. C., Bykowski T., Riley S. P., Woodman M. E., Brade V., Kraiczy P., Stevenson B., Wallich R.. 2005; Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun73:7398–7405[CrossRef]
    [Google Scholar]
  64. von Lackum K., Babb K., Riley S. P., Wattier R. L., Bykowski T., Stevenson B.. 2006; Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2, and lacks a complete activated-methyl cycle. Int J Med Microbiol296:S192–102
    [Google Scholar]
  65. Wallich R., Simon M. M., Hofmann H., Moter S. E., Schaible U. E., Kramer M. D.. 1993; Molecular and immunological characterization of a novel polymorphic lipoprotein of Borrelia burgdorferi. Infect Immun61:4158–4166
    [Google Scholar]
  66. Xavier K. B., Bassler B. L.. 2003; LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol6:191–197[CrossRef]
    [Google Scholar]
  67. Yang X., Goldberg M. S., Popova T. G., Schoeler G. B., Wikel S. K., Hagman K. E., Norgard M. V.. 2000; Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol37:1470–1479[CrossRef]
    [Google Scholar]
  68. Yang X. F., Lybecker M. C., Pal U., Alani S. M., Blevins J., Revel A. T., Samuels D. S., Norgard M. V.. 2005; Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol187:4822–4829[CrossRef]
    [Google Scholar]
  69. Zückert W. R., Meyer J., Barbour A. G.. 1999; Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun67:3257–3266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003350-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003350-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error