1887

Abstract

Newly developed PCR assays were used to PCR-amplify and sequence fragments of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase genes () comprising nearly the entire gene locus (2·2–2·4 kb, equal to 92–94 % of the protein coding sequence) from 75 sulfate-reducing prokaryotes (SRP) of a taxonomically wide range. Comparative phylogenetic analysis included all determined and publicly available AprBA sequences from SRP and selected homologous sequences of sulfur-oxidizing bacteria (SOB). The almost identical AprB and AprA tree topologies indicated a shared evolutionary path for the among the investigated SRP by vertical inheritance and concomitant lateral gene transfer (LGT). The topological comparison of AprB/A- and 16S rRNA gene-based phylogenetic trees revealed novel LGT events across the SRP divisions. Compositional gene analysis confirmed to be the first validated strain affected by a recent lateral transfer of as a putative effect of long-term co-cultivation with a species. Interestingly, the Apr proteins of SRP and SOB diverged into two phylogenetic lineages, with the SRP affiliated with the green sulfur bacteria, e.g. , while the -related sequences formed a distinct group. Analysis of genome data indicated that this phylogenetic separation is also reflected in the differing presence of the putative proteins functionally associated with Apr, QmoABC complex (quinone-interacting membrane-bound oxidoreductase) and AprM (transmembrane protein). Scenarios for the origin and evolution of the dissimilatory APS reductase are discussed within the context of the dissimilatory sulfite reductase (DsrAB) phylogeny, the appearance of QmoABC and AprM in the SRP and SOB genomes, and the geochemical setting of Archean Earth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003152-0
2007-07-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2026.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003152-0&mimeType=html&fmt=ahah

References

  1. Boucher Y., Douady C. J., Papke R. T., Walsh D. A., Boudreau M. E. R., Nesbo C. L., Case R. J., Doolittle W. F.. 2003; Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet37:283–328[CrossRef]
    [Google Scholar]
  2. Canfield D. E.. 2001; Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim Cosmochim Acta65:1117–1124[CrossRef]
    [Google Scholar]
  3. Canfield D. E.. 2005; The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu Rev Earth Planet Sci33:1–36[CrossRef]
    [Google Scholar]
  4. Canfield D. E., Raiswell R.. 1999; The evolution of the sulfur cycle. Am J Sci299:697–723[CrossRef]
    [Google Scholar]
  5. Canfield D. E., Habicht K. S., Thamdrup B.. 2000; The Archean sulfur cycle and the early history of atmospheric oxygen. Science288:658–661[CrossRef]
    [Google Scholar]
  6. Cecchini G., Gunsalus R. P., Maklashina E., Schröder I.. 2002; Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 1553;140–157[CrossRef]
    [Google Scholar]
  7. Dahl C., Trüper H. G.. 1994; Enzymes of dissimilatory sulfide oxidation in phototrophic sulfur bacteria. Methods Enzymol243:400–421
    [Google Scholar]
  8. Dahl C., Engels S., Pott-Sperling A. S., Schulte A., Sander J., Lubbe Y., Deuster O., Brune D. C.. 2005; Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol187:1392–1404[CrossRef]
    [Google Scholar]
  9. Daubin V., Ochman H.. 2004; Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res14:1036–1042[CrossRef]
    [Google Scholar]
  10. DeLong E. F.. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A89:5685–5689[CrossRef]
    [Google Scholar]
  11. Dhillon A., Goswami S., Riley M., Teske A., Sogin M.. 2005; Domain evolution and functional diversification of sulfite reductases. Astrobiology5:18–29[CrossRef]
    [Google Scholar]
  12. Farquhar J., Bao H. M., Thiemens M.. 2000; Atmospheric influence of Earth's earliest sulfur cycle. Science289:756–758[CrossRef]
    [Google Scholar]
  13. Friedrich M. W.. 2002; Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol184:278–289[CrossRef]
    [Google Scholar]
  14. Fritz G., Buchert T., Huber H., Stetter K. O., Kroneck P. M. H.. 2000; Adenylylsulfate reductases from archaea and bacteria are 1 : 1 alpha beta-heterodimeric iron-sulfur flavoenzymes – high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett473:63–66[CrossRef]
    [Google Scholar]
  15. Gogarten J. P., Townsend J. P.. 2005; Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol3:679–687[CrossRef]
    [Google Scholar]
  16. Habicht K. S., Gade M., Thamdrup B., Berg P., Canfield D. E.. 2002; Calibration of sulfate levels in the Archean ocean. Science298:2372–2374[CrossRef]
    [Google Scholar]
  17. Hattori S., Kamagata Y., Hanada S., Shoun H.. 2000; Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol50:1601–1609[CrossRef]
    [Google Scholar]
  18. Haveman S. A., Greene E. A., Stilwell C. P., Voordouw J. K., Voordouw G.. 2004; Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol186:7944–7950[CrossRef]
    [Google Scholar]
  19. Henstra A. M., Stams A. J. M.. 2004; Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol70:7236–7240[CrossRef]
    [Google Scholar]
  20. Hipp W. M., Pott A. S., Thum-Schmitz N., Faath I., Dahl C., Trüper H. G.. 1997; Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology143:2891–2902[CrossRef]
    [Google Scholar]
  21. Hippe H., Hagenauer A., Kroppenstedt R. M.. 1997; Menadione requirement for sulfate-reduction in Desulfotomaculum aeronauticum , and emended species description. Syst Appl Microbiol20:554–558[CrossRef]
    [Google Scholar]
  22. Imachi H., Sekiguchi Y., Kamagata Y., Loy A., Qiu Y. L., Hugenholtz P., Kimura N., Wagner M., Ohashi A., Harada H.. 2006; Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol72:2080–2091[CrossRef]
    [Google Scholar]
  23. Itoh T., Suzuki K., Sanchez P. C., Nakase T.. 1999; Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol49:1157–1163[CrossRef]
    [Google Scholar]
  24. Jain R., Rivera M. C., Moore J. E., Lake J. A.. 2003; Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol20:1598–1602[CrossRef]
    [Google Scholar]
  25. Kah L. C., Lyons T. W., Frank T. D.. 2004; Low marine sulphate and protracted oxygenation of the proterozoic biosphere. Nature431:834–838[CrossRef]
    [Google Scholar]
  26. Klein M., Friedrich M., Roger A. J., Hugenholtz P., Fishbain S., Abicht H., Blackall L. L., Stahl D. A., Wagner M.. 2001; Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol183:6028–6035[CrossRef]
    [Google Scholar]
  27. Kozak M.. 1999; Initiation of translation in prokaryotes and eukaryotes. Gene234:187–208[CrossRef]
    [Google Scholar]
  28. Kuever J., Rainey F. A., Hippe H.. 1999; Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov. Int J Syst Bacteriol49:1801–1808[CrossRef]
    [Google Scholar]
  29. Kuever J., Rainey F. A., Widdel F.. 2005; The deltaproteobacterial orders Desulfovibrionales, Desulfobacterales, Desulfarcales and Syntrophobacterales . In Bergey`s Manual of Systematic Bacteriology pp925–1040 Edited by Garrity G.. New York: Springer;
    [Google Scholar]
  30. Kurland C. G., Canback B., Berg O. G.. 2003; Horizontal gene transfer: a critical view. Proc Natl Acad Sci U S A100:9658–9662[CrossRef]
    [Google Scholar]
  31. Lampreia J., Pereira A. S., Moura J. J. G.. 1994; Adenylylsulfate reductases from sulfate-reducing bacteria. Methods Enzymol243:241–260
    [Google Scholar]
  32. Lancaster C. R. D.. 2003; Wolinella succinogenes quinol : fumarate reductase and its comparison to E. coli succinate : quinone reductase. FEBS Lett555:21–28[CrossRef]
    [Google Scholar]
  33. Lawrence J. G., Ochman H.. 1997; Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol44:383–397[CrossRef]
    [Google Scholar]
  34. Lerat E., Daubin V., Ochman H., Moran N. A.. 2005; Evolutionary origins of genomic repertoires in bacteria. PLoS Biol3:e130[CrossRef]
    [Google Scholar]
  35. Mander G. J., Duin E. C., Linder D., Stetter K. O., Hedderich R.. 2002; Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem269:1895–1904[CrossRef]
    [Google Scholar]
  36. Molin S., Tolker-Nielsen T.. 2003; Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol14:255–261[CrossRef]
    [Google Scholar]
  37. Molitor M., Dahl C., Molitor I., Schafer U., Speich N., Huber R., Deutzmann R., Trüper H. G.. 1998; A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology144:529–541[CrossRef]
    [Google Scholar]
  38. Mori K., Kim H., Kakegawa T., Hanada S.. 2003; A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam.nov., Thermodesulfobium narugense , gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles7:283–290[CrossRef]
    [Google Scholar]
  39. Moussard H., L'Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A. L., Jeanthon C.. 2004; Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol54:227–233[CrossRef]
    [Google Scholar]
  40. Mussmann M., Richter M., Lombardot T., Meyerdierks A., Kuever J., Kube M., Glockner F. O., Amann R.. 2005; Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol187:7126–7137[CrossRef]
    [Google Scholar]
  41. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W.. 1995; Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol164:165–172[CrossRef]
    [Google Scholar]
  42. Novichkov P. S., Omelchenko M. V., Gelfand M. S., Mironov A. A., Wolf Y. I., Koonin E. V.. 2004; Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol186:6575–6585[CrossRef]
    [Google Scholar]
  43. Pires R. H., Lourenco A. I., Morais F., Teixeira M., Xavier A. V., Saraiva L. M., Pereira I. A. C.. 2003; A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774 BBA Bioenergetics; 1605;67–82[CrossRef]
    [Google Scholar]
  44. Pires R. H., Venceslau S. S., Morais F., Teixeira M., Xavier A. V., Pereira I. A. C.. 2006; Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry45:249–262[CrossRef]
    [Google Scholar]
  45. Rabus R., Hansen T. A., Widdel F.. 1999; Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes: an Evolving Electronic Database for the Microbiological Community pp1–87 Edited by Dworkin M., Schleifer K.-H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  46. Rabus R., Ruepp A., Frickey T., Rattei T., Fartmann B., Stark M., Bauer M., Zibat A., Lombardot T.. other authors 2004; The genome of Desulfotalea psychrophila , a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol6:887–902[CrossRef]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Sander J., Engels-Schwarzlose S., Dahl C.. 2006; Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol186:357–366[CrossRef]
    [Google Scholar]
  49. Schedel M., Trüper H. G.. 1979; Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. Biochim Biophys Acta568:454–466[CrossRef]
    [Google Scholar]
  50. Schedel M., Trüper H. G.. 1980; Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch Microbiol124:205–210
    [Google Scholar]
  51. Sekiguchi Y., Kamagata Y., Syutsubo K., Ohashi A., Harada H., Nakamura K.. 1998; Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA analysis. Microbiology144:2655–2665[CrossRef]
    [Google Scholar]
  52. Shen Y. A., Buick R., Canfield D. E.. 2001; Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature410:77–81[CrossRef]
    [Google Scholar]
  53. Sorensen S. J., Bailey M., Hansen L. H., Kroer N., Wuertz S.. 2005; Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol3:700–710[CrossRef]
    [Google Scholar]
  54. Speich N., Dahl C., Heisig P., Klein A., Lottspeich F., Stetter K. O., Trüper H. G.. 1994; Adenylylsulphate reductase from the sulfate-reducing archaeon Archaeoglobus fulgidus – cloning and characterization of the genes and comparison of the enzyme with other iron-sulfur flavoproteins. Microbiology140:1273–1284[CrossRef]
    [Google Scholar]
  55. Sperling D., Kappler U., Wynen A., Dahl C., Trüper H. G.. 1998; Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett162:257–264[CrossRef]
    [Google Scholar]
  56. Strauss H.. 2003; Sulphur isotopes and the early Archaean sulphur cycle. Precambrian Res126:349–361[CrossRef]
    [Google Scholar]
  57. Suyama M., Bork P.. 2001; Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet17:10–13[CrossRef]
    [Google Scholar]
  58. Tice M. M., Lowe D. R.. 2004; Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature431:549–552[CrossRef]
    [Google Scholar]
  59. Trüper H. G., Fischer U.. 1982; Anaerobic oxidation of sulfur-compounds as electron-donors for bacterial photosynthesis. Philos Trans R Soc Lond B Biol Sci298:529–542[CrossRef]
    [Google Scholar]
  60. Zhaxybayeva O., Lapierre P., Gogarten J. P.. 2004; Genome mosaicism and organismal lineages. Trends Genet20:254–260[CrossRef]
    [Google Scholar]
  61. Zverlov V., Klein M., Friedrich M. W., Kellermann J., Stahl D. A., Loy A., Wagner M., Lücker S.. 2005; Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol187:2203–2208[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003152-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003152-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error