1887

Abstract

While searching for regulators of virulence attributes of the human-pathogenic fungus , a gene was identified similar to the genes encoding the mammalian phospholipase A2-activating protein (PLAP) and the protein Doa1, which is known to play a key role during ubiquitin (Ub)-dependent protein degradation. All three proteins contain WD-repeats. Both PLAP and CaDoa1 contain a mellitin-like sequence with a central ‘KVL’. This mellitin-like sequence was shown to be necessary for full function of CaDoa1. was expressed under all conditions investigated. Gene disruption of caused phenotypes including modified colony morphologies, temperature sensitivity, reduced secretion of hydrolytic enzymes and hypersensitivity to various compounds such as propranolol, butanol, caffeine, chelators, azoles, nocodazole and cadmium. Strikingly, mutants lacking were filamentous and grew as pseudohyphae and true hyphae under conditions that normally support yeast growth. Transcriptional profiling of Δ indicated that several genes associated with Ub-mediated proteolysis, including and , are upregulated. These data suggest that of , like its orthologue in , is associated with Ub-mediated proteolysis and has multiple functions. However, some functions of CaDoa1 seem to be unique for . These results support the hypothesis that Ub-mediated proteolysis plays an important role in the regulation of morphology in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002741-0
2007-04-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1026.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002741-0&mimeType=html&fmt=ahah

References

  1. Amerik A. Y., Li S. J., Hochstrasser M. 2000; Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae . Biol Chem 381:981–992
    [Google Scholar]
  2. Atir-Lande A., Gildor T., Kornitzer D. 2005; Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol Biol Cell 16:2772–2785 [CrossRef]
    [Google Scholar]
  3. Baker C. A., Desrosiers K., Dolan J. W. 2002; Propranolol inhibits hyphal development in Candida albicans . Antimicrob Agents Chemother 46:3617–3620 [CrossRef]
    [Google Scholar]
  4. Buffo J., Herman M. A., Soll D. R. 1984; A characterization of pH-regulated dimorphism in Candida albicans . Mycopathologia 85:21–30 [CrossRef]
    [Google Scholar]
  5. Butler D. K., All O., Goffena J., Loveless T., Wilson T., Toenjes K. A. 2006; The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet Biol 43:573–582 [CrossRef]
    [Google Scholar]
  6. Calderone R. A., Fonzi W. A. 2001; Virulence factors of Candida albicans . Trends Microbiol 9:327–335 [CrossRef]
    [Google Scholar]
  7. Castrillo J. I., Oliver S. G. 2006; Metabolomics and systems biology in Saccharomyces cerevisiae . In Fungal Genomics (The Mycota, Vol. 13) pp 3–18 Edited by Brown A. Berlin, Heidelberg: Springer;
    [Google Scholar]
  8. Clark M. A., Ozgur L. E., Conway T. M., Dispoto J., Crooke S. T., Bomalaski J. S. 1991; Cloning of a phospholipase A2-activating protein. Proc Natl Acad Sci U S A 88:5418–5422 [CrossRef]
    [Google Scholar]
  9. De Backer M. D., Maes D., Vandoninck S., Logghe M., Contreras R., Luyten W. H. 1999; Transformation of Candida albicans by electroporation. Yeast 15:1609–1618 [CrossRef]
    [Google Scholar]
  10. Decottignies A., Evain A., Ghislain M. 2004; Binding of Cdc48p to a ubiquitin-related UBX domain from novel yeast proteins involved in intracellular proteolysis and sporulation. Yeast 21:127–139 [CrossRef]
    [Google Scholar]
  11. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. 2000; Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016 [CrossRef]
    [Google Scholar]
  12. Faergeman N. J., Feddersen S., Christiansen J. K., Larsen M. K., Schneiter R., Ungermann C., Mutenda K., Roepstorff P., Knudsen J. 2004; Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae . Biochem J 380:907–918 [CrossRef]
    [Google Scholar]
  13. Falkow S. 1988; Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 10 (Suppl. 2:S274–S276 [CrossRef]
    [Google Scholar]
  14. Falquet L., Pagni M., Bucher P., Hulo N., Sigrist C. J., Hofmann K., Bairoch A. 2002; The prosite database, its status in 2002. Nucleic Acids Res 30:235–238 [CrossRef]
    [Google Scholar]
  15. Felk A., Kretschmar M., Albrecht A., Schaller M., Beinhauer S., Nichterlein T., Sanglard D., Korting H. C., Schafer W., Hube B. 2002; Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70:3689–3700 [CrossRef]
    [Google Scholar]
  16. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  17. Fradin C., De Groot P., MacCallum D., Schaller M., Klis F., Odds F. C., Hube B. 2005; Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415 [CrossRef]
    [Google Scholar]
  18. Fu Y., Ibrahim A. S., Fonzi W., Zhou X., Ramos C. F., Ghannoum M. A. 1997; Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans . Microbiology 143:331–340 [CrossRef]
    [Google Scholar]
  19. Gaigg B., Neergaard T. B., Schneiter R., Hansen J. K., Faergeman N. J., Jensen N. A., Andersen J. R., Friis J., Sandhoff R. other authors 2001; Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae . Mol Biol Cell 12:1147–1160 [CrossRef]
    [Google Scholar]
  20. Ghannoum M. A. 2000; Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143 [CrossRef]
    [Google Scholar]
  21. Ghislain M., Dohmen R. J., Levy F., Varshavsky A. 1996; Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae . EMBO J 15:4884–4899
    [Google Scholar]
  22. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  23. Goyal S., Khuller G. K. 1992; Phospholipid composition and subcellular distribution in yeast and mycelial forms of Candida albicans . J Med Vet Mycol 30:355–362 [CrossRef]
    [Google Scholar]
  24. Hochstrasser M., Varshavsky A. 1990; In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell 61:697–708 [CrossRef]
    [Google Scholar]
  25. Hofmann R. M., Pickart C. M. 2001; In vitro assembly and recognition of Lys-63 polyubiquitin chains. J Biol Chem 276:27936–27943 [CrossRef]
    [Google Scholar]
  26. Hromatka B. S., Noble S. M., Johnson A. D. 2005; Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826 [CrossRef]
    [Google Scholar]
  27. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans . Mol Microbiol 14:87–99 [CrossRef]
    [Google Scholar]
  28. Hube B., Stehr F., Bossenz M., Mazur A., Kretschmar M., Schafer W. 2000; Secreted lipases of Candida albicans : cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 174:362–374 [CrossRef]
    [Google Scholar]
  29. Hube B., Hess D., Baker C. A., Schaller M., Schafer W., Dolan J. W. 2001; The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans . Microbiology 147:879–889
    [Google Scholar]
  30. Hwang C. S., Oh J. H., Huh W. K., Yim H. S., Kang S. O. 2003; Ssn6, an important factor of morphological conversion and virulence in Candida albicans . Mol Microbiol 47:1029–1043 [CrossRef]
    [Google Scholar]
  31. Jensen-Pergakes K., Guo Z., Giattina M., Sturley S. L., Bard M. 2001; Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae . J Bacteriol 183:4950–4957 [CrossRef]
    [Google Scholar]
  32. Johnson E. S., Ma P. C., Ota I. M., Varshavsky A. 1995; A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456 [CrossRef]
    [Google Scholar]
  33. Jones T., Federspiel N. A., Chibana H., Dungan J., Kalman S., Magee B. B., Newport G., Thorstenson Y. R., Agabian N. other authors 2004; The diploid genome sequence of Candida albicans . Proc Natl Acad Sci U S A 101:7329–7334 [CrossRef]
    [Google Scholar]
  34. Jungmann J., Reins H. A., Schobert C., Jentsch S. 1993; Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371 [CrossRef]
    [Google Scholar]
  35. Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., Bankaitis V. A. 1997; Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105 [CrossRef]
    [Google Scholar]
  36. Keil R. L., Wolfe D., Reiner T., Peterson C. J., Riley J. L. 1996; Molecular genetic analysis of volatile-anesthetic action. Mol Cell Biol 16:3446–3453
    [Google Scholar]
  37. Knechtle P., Goyard S., Brachat S., Ibrahim-Granet O., d'Enfert C. 2005; Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction. Res Microbiol 156:822–829 [CrossRef]
    [Google Scholar]
  38. Kumamoto C. A., Vinces M. D. 2005a; Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–1554 [CrossRef]
    [Google Scholar]
  39. Kumamoto C. A., Vinces M. D. 2005b; Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol 59:113–133 [CrossRef]
    [Google Scholar]
  40. Kunze D., Melzer I., Bennett D., Sanglard D., MacCallum D., Coleman D. C., Odds F. C., Hube B., Nörskau J., Schäfer W. 2005; Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3 , of Candida albicans . Microbiology 151:3381–3394 [CrossRef]
    [Google Scholar]
  41. Laprade L., Boyartchuk V. L., Dietrich W. F., Winston F. 2002; Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence. Genetics 161:509–519
    [Google Scholar]
  42. Leng P., Sudbery P. E., Brown A. J. 2000; Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans . Mol Microbiol 35:1264–1275 [CrossRef]
    [Google Scholar]
  43. Leuker C. E., Sonneborn A., Delbruck S., Ernst J. F. 1997; Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans . Gene 192:235–240 [CrossRef]
    [Google Scholar]
  44. Lis E. T., Romesberg F. E. 2006; Role of Doa1 in the Saccharomyces cerevisiae DNA damage response. Mol Cell Biol 26:4122–4133 [CrossRef]
    [Google Scholar]
  45. Liu H., Kohler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726 [CrossRef]
    [Google Scholar]
  46. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  47. Mullally J. E., Chernova T., Wilkinson K. D. 2006; Doa1 is a Cdc48 adaptor that possesses a novel ubiquitin binding domain. Mol Cell Biol 26:822–830 [CrossRef]
    [Google Scholar]
  48. Murad A. M., Lee P. R., Broadbent I. D., Barelle C. J., Brown A. J. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans . Yeast 16:325–327 [CrossRef]
    [Google Scholar]
  49. Naglik J. R., Challacombe S. J., Hube B. 2003; Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428 [CrossRef]
    [Google Scholar]
  50. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. 1994; The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300 [CrossRef]
    [Google Scholar]
  51. Peitsch M. C., Borner C., Tschopp J. 1993; Sequence similarity of phospholipase A2 activating protein and the G protein beta-subunits: a new concept of effector protein activation in signal transduction?. Trends Biochem Sci 18:292–293 [CrossRef]
    [Google Scholar]
  52. Pickart C. M. 1997; Targeting of substrates to the 26S proteasome. FASEB J 11:1055–1066
    [Google Scholar]
  53. Roig P., Gozalbo D. 2003; Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells. Fungal Genet Biol 39:70–81 [CrossRef]
    [Google Scholar]
  54. Rumpf S., Jentsch S. 2006; Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol Cell 21:261–269 [CrossRef]
    [Google Scholar]
  55. Sanglard D., Hube B., Monod M., Odds F. C., Gow N. A. 1997; A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539–3546
    [Google Scholar]
  56. Schaller M., Korting H. C., Schafer W., Bastert J., Chen W., Hube B. 1999; Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34:169–180 [CrossRef]
    [Google Scholar]
  57. Seigneurin-Berny D., Verdel A., Curtet S., Lemercier C., Garin J., Rousseaux S., Khochbin S. 2001; Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21:8035–8044 [CrossRef]
    [Google Scholar]
  58. Sigle H. C., Thewes S., Niewerth M., Korting H. C., Schafer-Korting M., Hube B. 2005; Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans . J Antimicrob Chemother 55:663–673 [CrossRef]
    [Google Scholar]
  59. Smith T. F., Gaitatzes C., Saxena K., Neer E. J. 1999; The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185 [CrossRef]
    [Google Scholar]
  60. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F. 1997; Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans , is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991 [CrossRef]
    [Google Scholar]
  61. Sudbery P. E. 2001; The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol Microbiol 41:19–31 [CrossRef]
    [Google Scholar]
  62. Sundstrom P. 2002; Adhesion in Candida spp. Cell Microbiol 4:461–469 [CrossRef]
    [Google Scholar]
  63. Sung P., Prakash S., Prakash L. 1988; The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev 2:1476–1485 [CrossRef]
    [Google Scholar]
  64. Swain E., Baudry K., Stukey J., McDonough V., Germann M., Nickels J. T. Jr 2002; Sterol-dependent regulation of sphingolipid metabolism in Saccharomyces cerevisiae . J Biol Chem 277:26177–26184 [CrossRef]
    [Google Scholar]
  65. Takahashi M., Banno Y., Nozawa Y. 1991; Secreted Candida albicans phospholipases: purification and characterization of two forms of lysophospholipase-transacylase. J Med Vet Mycol 29:193–204 [CrossRef]
    [Google Scholar]
  66. Tzermia M., Horaitis O., Alexandraki D. 1994; The complete sequencing of a 24.6 kb segment of yeast chromosome XI identified the known loci URA1, SAC1 and TRP3, and revealed 6 new open reading frames including homologues to the threonine dehydratases, membrane transporters, hydantoinases and the phospholipase A2-activating protein. Yeast 10:663–679 [CrossRef]
    [Google Scholar]
  67. Wolfe D., Hester P., Keil R. L. 1998; Volatile anesthetic additivity and specificity in Saccharomyces cerevisiae : implications for yeast as a model system to study mechanisms of anesthetic action. Anesthesiology 89:174–181 [CrossRef]
    [Google Scholar]
  68. Yang H., Bard M., Bruner D. A., Gleeson A., Deckelbaum R. J., Aljinovic G., Pohl T. M., Rothstein R., Sturley S. L. 1996; Sterol esterification in yeast: a two-gene process. Science 272:1353–1356 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002741-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002741-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error