1887

Abstract

Transcription of the operon, which comprises genes involved in the late stage of galacturonate utilization, is known to be negatively regulated by the KdgR repressor. In this study, Northern analysis was carried out to demonstrate that the gene also negatively regulates the operon, encoding ketodeoxyuronate isomerase and ketodeoxygluconate reductase. It has also been demonstrated that expression of the operon can be induced by galacturonate and is subject to catabolite repression by glucose. The gene was found to be involved in this catabolite repression. Primer extension analysis identified a -like promoter sequence preceding . Gel mobility shift assays and DNase I footprinting analyses indicated that KdgR is capable of binding specifically to two sites within the intergenic region . Reporter gene analysis revealed that these two KdgR-binding sites function . One site is centred 33.5 bp upstream of the translational start site of and can serve as an operator for controlling expression of the operon. The other is centred 57.5 bp upstream of the translational start site of and can serve as an operator for controlling expression of the operon. Possible physiological significance of this regulation is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002253-0
2007-03-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/701.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002253-0&mimeType=html&fmt=ahah

References

  1. Ausubel F., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1994; Current Protocols in Molecular Biology New York: Greene Publishing Associates & Wiley-Interscience;
    [Google Scholar]
  2. Chang S., Cohen S. N.. 1979; High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet168:111–115[CrossRef]
    [Google Scholar]
  3. Chatterjee A. K., Thurn K. K., Tyrell D. J.. 1985; Isolation and characterization of Tn 5 insertion mutants of Erwinia chrysanthemi that are deficient in polygalacturonate catabolic enzymes oligogalacturonate lyase and 3-deoxy-d-glycero-2,5-hexodiulosonate dehydrogenase. J Bacteriol162:708–714
    [Google Scholar]
  4. Chiou C. Y., Wang H. H., Shaw G. C.. 2002; Identification and characterization of the non-PTS fru locus of Bacillus megaterium ATCC 14581. Mol Genet Genomics268:240–248[CrossRef]
    [Google Scholar]
  5. Condemine G., Robert-Baudouy J.. 1987; 2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi . J Bacteriol169:1972–1978
    [Google Scholar]
  6. Dimitrova D. S., Giacca M., Demarchi F., Biamonti G., Riva S., Falaschi A.. 1996; In vivo protein-DNA interactions at human DNA replication origin. Proc Natl Acad Sci U S A93:1498–1503[CrossRef]
    [Google Scholar]
  7. Fedhila S., Msadek T., Nel P., Lereclus D.. 2002; Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis . J Bacteriol184:5554–5562[CrossRef]
    [Google Scholar]
  8. Fried M., Crothers D. M.. 1981; Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res9:6505–6525[CrossRef]
    [Google Scholar]
  9. Helmann J. D.. 1995; Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res23:2351–2360[CrossRef]
    [Google Scholar]
  10. Hueck C. J., Hillen, W., Saier, M. H., Jr.. 1994; Analysis of a cis -active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol145:503–518[CrossRef]
    [Google Scholar]
  11. Hugouvieux-Cotte-Pattat N., Reverchon S.. 2001; Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Mol Microbiol41:1125–1132
    [Google Scholar]
  12. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J.. 1987; Hexuronate catabolism in Erwinia chrysanthemi . J Bacteriol169:1223–1231
    [Google Scholar]
  13. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J.. 1989; Isolation of Erwinia chrysanthemi mutants altered in pectinolytic enzyme production. Mol Microbiol3:1587–1597[CrossRef]
    [Google Scholar]
  14. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S.. 1996; Regulation of pectinolysis in Erwinia chrysanthemi . Annu Rev Microbiol50:213–257[CrossRef]
    [Google Scholar]
  15. Hugouvieux-Cotte-Pattat N., Blot N., Reverchon S.. 2001; Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol41:1113–1123
    [Google Scholar]
  16. Inoue T., Cech T. R.. 1985; Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A82:648–652[CrossRef]
    [Google Scholar]
  17. Lee T. R., Hsu H. P., Shaw G. C.. 2001; Transcriptional regulation of the Bacillus subtilis bscR-CYP102A3 operon by the BscR repressor and differential induction of cytochrome CYP102A3 expression by oleic acid and palmitate. J Biochem130:569–574[CrossRef]
    [Google Scholar]
  18. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stulke J.. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis : evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol41:409–422[CrossRef]
    [Google Scholar]
  19. Mekjian K. R., Bryan E. M., Beall B. W., Moran C. P., Jr.. 1999; Regulation of hexuronate utilization in Bacillus subtilis . J Bacteriol181:426–433
    [Google Scholar]
  20. Nasser W., Reverchon S., Robert-Baudouy J.. 1992; Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi . Mol Microbiol6:257–265[CrossRef]
    [Google Scholar]
  21. Nasser W., Reverchon S., Condemine G., Robert-Baudouy J.. 1994; Specific interactions of Erwinia chrysanthemi KdgR repressor with different operators of genes involved in pectinolysis. J Mol Biol236:427–440[CrossRef]
    [Google Scholar]
  22. Pujic P., Dervyn R., Sorokin A., Ehrlich S. D.. 1998; The kdgRKAT operon of Bacillus subtilis : detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology144:3111–3118[CrossRef]
    [Google Scholar]
  23. Ray C., Hay R. E., Carter H. L., Moran C. P., Jr.. 1985; Mutations that affect utilization of a promoter in stationary-phase Bacillus subtilis . J Bacteriol163:610–614
    [Google Scholar]
  24. Rodionov D. A., Mironov A. A., Rakhmaninova A. B., Gelfand M. S.. 2000; Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria. Mol Microbiol38:673–683[CrossRef]
    [Google Scholar]
  25. Rodionov D. A., Gelfand M. S., Hugouvieux-Cotte-Pattat N.. 2004; Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria. Microbiology150:3571–3590[CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. San Francisco M. J., Keenan R. W.. 1993; Uptake of galacturonic acid in Erwinia chrysanthemi EC16. J Bacteriol175:4263–4265
    [Google Scholar]
  28. Shaw W. V.. 1975; Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol43:737–755
    [Google Scholar]
  29. Stolt P., Stoker N. G.. 1996; Protein-DNA interactions in the ori region of the Mycobacterium fortuitum plasmid pAL5000. J Bacteriol178:6693–6700
    [Google Scholar]
  30. Stulke J., Hillen W.. 2000; Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol54:849–880[CrossRef]
    [Google Scholar]
  31. Wen L. P., Ruettinger R. T., Fulco A. J.. 1989; Requirement for a 1-kilobase 5′-flanking sequence for barbiturate-inducible expression of the cytochrome P-450BM-3 gene in Bacillus megaterium . J Biol Chem264:10996–11003
    [Google Scholar]
  32. Zuber P., Losick R.. 1983; Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Cell35:275–283[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002253-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002253-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error