1887

Abstract

The structure, biological activity and microbial biodiversity of a biofilm used for the removal of copper from groundwater were studied and compared with those of a biofilm grown under copper-free conditions. A laboratory-scale submerged fixed biofilter was fed with groundwater (2.3 l h) artificially polluted with Cu(II) (15 mg l) and amended with sucrose (150 mg l) as carbon source. Between 73 and 90 % of the Cu(II) was removed from water during long-term operation (over 200 days). The biofilm was a complex ecosystem, consisting of eukaryotic and prokaryotic micro-organisms. Scanning electron microscopy revealed marked structural changes in the biofilm induced by Cu(II), compared to the biofilm grown in absence of the heavy metal. Analysis of cell-bound extracellular polymeric substances (EPS) demonstrated a significant modification of the composition of cell envelopes in response to Cu(II). Transmission electron microscopy and energy-dispersive X-ray microanalysis (EDX) showed that copper bioaccumulated in the EPS matrix by becoming bound to phosphates and/or silicates, whereas copper accumulated only intracytoplasmically in cells of eukaryotic microbes. Cu(II) also decreased sucrose consumption, ATP content and alkaline phosphatase activity of the biofilm. A detailed study of the bacterial community composition was conducted by 16S rRNA-based temperature gradient gel electrophoresis (TGGE) profiling, which showed spatial and temporal stability of the species diversity of copper-exposed biofilms during biofilter operation. PCR reamplification and sequencing of 14 TGGE bands showed the prevalence of alphaproteobacteria, with most sequences (78 %) affiliated to the . The major cultivable colony type in plate counts of the copper-exposed biofilm was also identified as that of sp. These data confirm a major role of these organisms in the composition of the Cu(II)-removing community.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002139-0
2007-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/325.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002139-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaeffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. APHA ( 2001; ). Standard Methods for the Examination of Water and Wastewater, 20th edn. Edited by L. S. Clesceri, A. E. Greenberg & A. D. Eaton. Washington DC: American Public Health Association.
  3. Balkwill, D. L., Fredrickson, J. K. & Romine, M. F. ( 2003; ). Sphingomonas and related genera. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.14. 31/07/2003. Edited by M. Dworkin and others. New York: Springer.
  4. Berman, T. ( 1970; ). Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol Oceanogr 15, 663–674.[CrossRef]
    [Google Scholar]
  5. Blindauer, C. A., Harrison, M. D., Robinson, A. K., Parkinson, J. A., Bowness, P. W., Sadler, P. J. & Robinson, N. J. ( 2002; ). Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45, 1421–1432.[CrossRef]
    [Google Scholar]
  6. Blumenkrantz, N. & Asboe-Hansen, G. ( 1973; ). New method for quantitative determination of uronic acids. Anal Biochem 54, 484–489.[CrossRef]
    [Google Scholar]
  7. Boivin, M. E. Y., Massieux, B., Breure, A. M., Van Den Ende, F. P., Greve, G. D., Rutgers, M. & Admiraal, W. ( 2005; ). Effects of copper and temperature on aquatic bacterial communities. Aquat Microbiol 71, 345–356.
    [Google Scholar]
  8. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  9. Bruins, M. R., Kapil, S. & Ochme, F. W. ( 2000; ). Microbial resistance to metals in the environment. Ecotoxicol Environ Safety 45, 198–207.[CrossRef]
    [Google Scholar]
  10. Brümmer, I. H. M., Felske, A. & Wagner-Döbler, I. ( 2003; ). Diversity and seasonal variability of β-Proteobacteria in biofilms of polluted rivers: analysis by temperature-gradient gel electrophoresis and cloning. Appl Environ Microbiol 69, 4463–4473.[CrossRef]
    [Google Scholar]
  11. Cameron, R. E. ( 1992; ). Guide to Site and Soil Description for Hazardous Waste Site Characterization, vol. 1, Metals. Environmental Protection Agency EPA/600/4-91/029.
  12. Costley, S. C. & Wallis, F. M. ( 2001; ). Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35, 3715–3723.[CrossRef]
    [Google Scholar]
  13. Critchley, M. M., Cromar, N. J., McClure, N. C. & Fallowfield, H. J. ( 2003; ). The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria. J Appl Microbiol 94, 501–507.[CrossRef]
    [Google Scholar]
  14. Critchley, M. M., Pasetto, R. & O'Halloran, R. J. ( 2004; ). Microbiological influences in “blue water” copper corrosion. J Appl Microbiol 97, 590–597.[CrossRef]
    [Google Scholar]
  15. Dean, W. E. ( 1974; ). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sedim Petrol 44, 242–248.
    [Google Scholar]
  16. Dohelman, P. & Haanstra, L. ( 1989; ). Short- and long-term effects of heavy metals on phosphatase activity: an ecological dose-response model approach. Biol Fertility Soils 8, 235–241.
    [Google Scholar]
  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.[CrossRef]
    [Google Scholar]
  18. Eccles, H. ( 1999; ). Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol 17, 462–465.[CrossRef]
    [Google Scholar]
  19. Fang, H. H. P., Xu, L. C. & Chan, K. Y. ( 2002; ). Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36, 4709–4716.[CrossRef]
    [Google Scholar]
  20. Ferris, F. G. ( 1989; ). Metallic ion interactions with the outer membrane of Gram-negative bacteria. In Metal Ions and Bacteria, pp. 295–323. Edited by T. J. Beveridge & R. J. Doyle. New York: Wiley.
  21. Fraga, C. G. ( 2005; ). Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26, 235–244.[CrossRef]
    [Google Scholar]
  22. Gatti, D., Mitra, B. & Rosen, B. P. ( 2000; ). Escherichia coli soft metal ion-translocating ATPases. J Biol Chem 275, 34009–34012.[CrossRef]
    [Google Scholar]
  23. Gómez, M. A., Hontoria, E. & González-López, J. ( 2002; ). Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter. J Hazard Mater 90, 267–278.[CrossRef]
    [Google Scholar]
  24. Hotz, C., Lowe, N. M., Araya, M. & Brown, K. H. ( 2003; ). Assessment of the trace element status of individuals and populations: the example of zinc and copper. J Nutr 133, 1563–1568.
    [Google Scholar]
  25. Huang, Q. & Shindo, H. ( 2000; ). Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol Biochem 32, 1885–1892.[CrossRef]
    [Google Scholar]
  26. Jang, A., Kim, S. M., Kim, S. Y., Lee, S. G. & Kim, I. S. ( 2001; ). Effect of heavy metals (Cu, Pb, Ni) on the composition of EPS in biofilms. Water Sci Technol 43, 41–48.
    [Google Scholar]
  27. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. ( 1998; ). Multiple sequence alignment with Clustal X. Trends Biochem Sci 23, 403–405.[CrossRef]
    [Google Scholar]
  28. Karl, D. M. ( 1980; ). Cellular nucleotide measurements and application in microbial ecology. Microbiol Rev 44, 739–796.
    [Google Scholar]
  29. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). MEGA2: Molecular Evolutionary Genetics Analysis software, Arizona State University, Tempe, Arizona, USA.
  30. Lawrence, J. R., Chenier, M. R., Roy, R., Beaumier, D., Fortin, N., Swerhorne, G. D. W., Neu, T. R. & Greer, C. W. ( 2004; ). Microscale and molecular assessment of impacts of nickel, nutrients and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70, 4326–4339.[CrossRef]
    [Google Scholar]
  31. Leonhäuser, J., Röhricht, M., Wagner-Döbler, I. & Deckwer, W. D. ( 2006; ). Reaction engineering aspects of microbial mercury removal. Eng Life Sci 6, 139–148.[CrossRef]
    [Google Scholar]
  32. Malik, A. ( 2004; ). Metal bioremediation through growing cells. Environ Int 30, 261–278.[CrossRef]
    [Google Scholar]
  33. Massieux, B., Boivin, M. E. Y., Van Den Ende, F. P., Langenskiöld, J., Marvan, P., Barrenguet, C., Admiraal, W., Laanbroek, H. J. & Zwart, G. ( 2004; ). Analysis of structural and physiological profiles to assess the effects of Cu on biofilm microbial communities. Appl Environ Microbiol 70, 4512–4521.[CrossRef]
    [Google Scholar]
  34. McComb, E. A. & McCready, R. M. ( 1957; ). Determination of acetyl in pectin and acetylated carbohydrate polymers. Anal Chem 29, 819–821.[CrossRef]
    [Google Scholar]
  35. Mulligan, C. N., Yong, R. N. & Gibbs, B. F. ( 2001; ). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geology 60, 193–207.[CrossRef]
    [Google Scholar]
  36. Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S RNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  37. Nicolaisen, M. H. & Ramsing, N. B. ( 2002; ). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50, 189–203.[CrossRef]
    [Google Scholar]
  38. Nielsen, P. & Jahn, A. ( 2002; ). Extraction of EPS. In Microbial Extracellular Polymeric Substances. Characterization, Structure and Function, pp. 49–71. Edited by J. Winderg, J. Neu & H. Flemming. Berlin: Springer.
  39. Ordax, M., Marco-Noales, E., López, M. M. & Biosca, E. G. ( 2006; ). Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72, 3482–3488.[CrossRef]
    [Google Scholar]
  40. Pozo, C., Rodelas, B., De La Escalera, S. & González-López, J. ( 2002; ). d,l-Hydantoinase activity of an Ochrobactrum anthropi strain. J Appl Microbiol 92, 1028–1034.[CrossRef]
    [Google Scholar]
  41. Principi, P., Villa, F., Bernasconi, M. & Zanardini, E. ( 2006; ). Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 40, 99–106.[CrossRef]
    [Google Scholar]
  42. Renella, G., Ortigoza, A. L. R., Landi, P. & Nannipieri, P. ( 2003; ). Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biol Biochem 35, 1203–1210.[CrossRef]
    [Google Scholar]
  43. Rensing, C. & Grass, G. ( 2003; ). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27, 197–213.[CrossRef]
    [Google Scholar]
  44. Roe, J. H. & Papadopoulos, N. M. ( 1954; ). The determination of fructose-6-phosphate and fructose-1,6-diphosphate. J Biol Chem 210, 703–707.
    [Google Scholar]
  45. Rosen, B. P. ( 2002; ). Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133, 689–693.[CrossRef]
    [Google Scholar]
  46. Rutheford, J. C. & Bird, A. J. ( 2004; ). Metal-responsive transcription factors that regulate iron, zinc and copper homeostasis in eukaryotic cells. Eukaryot Cell 3, 1–13.[CrossRef]
    [Google Scholar]
  47. Silver, S. ( 1996; ). Bacterial resistance to toxic metal ions – a review. Gene 179, 9–19.[CrossRef]
    [Google Scholar]
  48. Silver, S. & Phung, L. T. ( 2005; ). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32, 587–605.[CrossRef]
    [Google Scholar]
  49. Speir, T. V., Kettles, H. A., Parshotam, A., Searle, P. L. & Vlaar, L. N. C. ( 1995; ). A simple kinetic approach to derive the ecological dose value ED 50, for the assessment of Cr (VI) toxicity to soil biological properties. Soil Biol Biochem 27, 801–811.[CrossRef]
    [Google Scholar]
  50. Tchounwou, P. B., Abdelghani, A. A., Pramar, Y. V., Heyer, L. R. & Steward, C. M. ( 1996; ). Assessment of potential health risks associated with ingesting heavy metals in fish collected from a hazardous-waste contaminated wetland in Louisiana. Res Environ Health 11, 191–203.
    [Google Scholar]
  51. Teitzel, G. M. & Parsek, M. R. ( 2003; ). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69, 2313–2320.[CrossRef]
    [Google Scholar]
  52. Turpeinen, R., Kairesalo, T. & Häggblom, M. M. ( 2004; ). Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47, 39–50.[CrossRef]
    [Google Scholar]
  53. Uriu-Adams, J. Y. & Keen, C. L. ( 2005; ). Copper, oxidative stress, and human health. Mol Aspects Med 26, 268–298.[CrossRef]
    [Google Scholar]
  54. Valls, M. & De Lorenzo, V. ( 2002; ). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26, 327–338.[CrossRef]
    [Google Scholar]
  55. Vinuesa, P., Rademaker, J. L. W., De Bruijn, F. J. & Werner, D. ( 1998; ). Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64, 2096–2104.
    [Google Scholar]
  56. von Canstein, H., Li, Y., Timmis, K. N., Deckwer, W. D. & Wagner-Döbler, I. ( 1999; ). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 65, 5279–5284.
    [Google Scholar]
  57. Ward, B. B. & O'Mullan, G. D. O. ( 2002; ). Worldwide distribution of Nitrosococcus oceani, a marine ammonia-oxidizing γ-proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. Appl Environ Microbiol 68, 4153–4157.[CrossRef]
    [Google Scholar]
  58. Watanabe, K., Yamamoto, S., Hino, S. & Harayama, S. ( 1998; ). Population dynamics of phenol degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl Environ Microbiol 64, 1203–1209.
    [Google Scholar]
  59. Weisburgh, W. G., Barn, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  60. White, D. C., Sutton, S. & Ringelberg, D. ( 1995; ). The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7, 301–306.[CrossRef]
    [Google Scholar]
  61. Yu, Z. & Morrison, M. ( 2004; ). Comparison of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70, 4800–4806.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002139-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002139-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error