1887

Abstract

The fission yeast is widely used as a model eukaryote for cell and molecular studies but little is known of natural genetic variation in this species. In order to obtain informative molecular markers, imperfect tandem repeats, identified through bioinformatic methods, were tested for length polymorphism in six wild-type strains of isolated from different substrates and geographical locations in Africa, America, Asia and Europe. Of 26 loci tested, 21 were multi-allelic, consistent with tandem repeat copy number variation. Eleven of these polymorphic tandem repeats are in regions encoding intracellular proteins. Most of the protein-coding repeats are not sited within structured domains but have non-regular predicted structure; one has a repeat unit length corresponding to integer turns of a predicted amphipathic -helix secondary structure, suggesting that this repeat may be tolerated because copy number mutations change -helix length but not orientation within the protein structure. In contrast to the differences observed between natural isolates of , genetic strains were found to be essentially isogenic: only two polymorphic loci were detected out of 26 minisatellites and five microsatellites tested in 16 strains, including a hypervariable microsatellite in the gene. The polymorphic tandem repeat markers identified in this study will prove useful for DNA fingerprinting and molecular analysis of natural genetic variation in isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001669-0
2007-03-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/887.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001669-0&mimeType=html&fmt=ahah

References

  1. Amoah-Buahin, E., Bone, N. & Armstrong, J. ( 2005; ). Hyphal growth in the fission yeast Schizosaccharomyces pombe. Eukarot Cell 4, 1287–1297.[CrossRef]
    [Google Scholar]
  2. Benson, G. ( 1999; ). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.[CrossRef]
    [Google Scholar]
  3. Boby, T., Patch, A.-M. & Aves, S. J. ( 2005; ). TRbase: a database relating tandem repeats to disease genes for the human genome. Bioinformatics 21, 811–816.[CrossRef]
    [Google Scholar]
  4. Bowen, S. & Wheals, A. E. ( 2006; ). Ser/Thr-rich domains are associated with genetic variation and morphogenesis in Saccharomyces cerevisiae. Yeast 23, 633–640.[CrossRef]
    [Google Scholar]
  5. Calafell, F., Shuster, A., Speed, W. C., Kidd, J. R. & Kidd, K. K. ( 1998; ). Short tandem repeat polymorphism evolution in humans. Eur J Hum Genet 6, 38–49.[CrossRef]
    [Google Scholar]
  6. Chambers, G. K. & MacAvoy, E. S. ( 2000; ). Microsatellites: consensus and controversy. Comp Biochem Physiol B Biochem Mol Biol 126, 455–476.[CrossRef]
    [Google Scholar]
  7. Debrauwère, H., Gendrel, C. G., Lechat, S. & Dutreix, M. ( 1997; ). Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie 79, 577–586.[CrossRef]
    [Google Scholar]
  8. Denoeud, F., Vergnaud, G. & Benson, G. ( 2003; ). Predicting human minisatellite polymorphism. Genome Res 13, 856–867.[CrossRef]
    [Google Scholar]
  9. Egel, R. ( 2004; ). The Molecular Biology of Schizosaccharomyces pombe: Genetics, Genomics and Beyond. Berlin: Springer.
  10. Ellegren, H. ( 2004; ). Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5, 435–445.
    [Google Scholar]
  11. Felsenstein, J. ( 2005; ). phylip – Phylogeny Inference Package, version 3.6. Distributed by the author. University of Washington, Seattle, USA.
  12. Fondon, J. W., III & Garner, H. R. ( 2004; ). Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci U S A 101, 18058–18063.[CrossRef]
    [Google Scholar]
  13. Forsburg, S. L. ( 1999; ). The best yeast? Trends Genet 15, 340–344.[CrossRef]
    [Google Scholar]
  14. Forsburg, S. L. & Rhind, N. ( 2006; ). Basic methods for fission yeast. Yeast 23, 173–183.[CrossRef]
    [Google Scholar]
  15. Hashemzadeh-Bonehi, L., Curtis, P. S., Morley, S. J., Thorpe, J. R. & Pain, V. M. ( 2003; ). Overproduction of a conserved domain of fission yeast and mammalian translation initiation factor eIF4G causes aberrant cell morphology and results in disruption of the localization of F-actin and the organization of microtubules. Genes Cells 8, 163–178.[CrossRef]
    [Google Scholar]
  16. Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L. & Hedges, S. B. ( 2001; ). Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133.[CrossRef]
    [Google Scholar]
  17. Hoff, E. F., Levin, H. L. & Boeke, J. D. ( 1998; ). Schizosaccharomyces pombe retrotransposon Tf2 mobilizes primarily through homologous cDNA recombination. Mol Cell Biol 18, 6839–6852.
    [Google Scholar]
  18. Ingavale, S. S., Kaur, R., Aggarwal, P. & Bachhawat, A. K. ( 1998; ). A minisatellite sequence within the propeptide region of the vacuolar carboxypeptidase Y gene of Schizosaccharomyces pombe. J Bacteriol 180, 3727–3729.
    [Google Scholar]
  19. Kashi, Y., King, D. & Soller, M. ( 1997; ). Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13, 74–78.[CrossRef]
    [Google Scholar]
  20. Katti, M. V., Ranjekar, P. K. & Gupta, V. S. ( 2001; ). Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18, 1161–1167.[CrossRef]
    [Google Scholar]
  21. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. ( 2003; ). Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254.[CrossRef]
    [Google Scholar]
  22. Kurtzman, C. P. & Robnett, C. J. ( 1991; ). Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast 7, 61–72.[CrossRef]
    [Google Scholar]
  23. Kurtzman, C. P. & Robnett, C. J. ( 1998; ). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331–371.[CrossRef]
    [Google Scholar]
  24. Leupold, U. ( 1950; ). Die Vererbung von Homothallie und Heterothallie bei Schizosaccharomyces pombe. C R Lab Carsberg Sér Physiol 24, 381–480.
    [Google Scholar]
  25. Levin, H. L., Weaver, D. C. & Boeke, J. D. ( 1990; ). Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol 10, 6791–6798.
    [Google Scholar]
  26. Lindner, P. ( 1893; ). Schizosaccharomyces pombe n. sp., ein neuer Gährungserreger. Wochenschr Brauerei 10, 1298–1300.
    [Google Scholar]
  27. Marguerat, S., Jensen, T. S., de Lichtenberg, U., Wilhelm, B. T., Jensen, L. J. & Bähler, J. ( 2006; ). The more the merrier: comparative analysis of microarray studies on cell cycle-regulated genes in fission yeast. Yeast 23, 261–277.[CrossRef]
    [Google Scholar]
  28. McGuffin, L. J., Bryson, K. & Jones, D. T. ( 2000; ). The psipred protein structure prediction server. Bioinformatics 16, 404–405.[CrossRef]
    [Google Scholar]
  29. Mitas, M. ( 1997; ). Trinucleotide repeats associated with human disease. Nucleic Acids Res 25, 2245–2254.[CrossRef]
    [Google Scholar]
  30. Mitchison, J. M. ( 1989; ). Cell cycle growth and periodicities. In Molecular Biology of the Fission Yeast, pp. 205–242. Edited by A. Nasim, P. Young & B. F. Johnson. San Diego: Academic Press.
  31. Moreno, S., Klar, A. & Nurse, P. ( 1991; ). Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194, 795–823.
    [Google Scholar]
  32. Osterwalder, A. ( 1924; ). Schizosaccharomyces liquefaciens n. sp., eine gegen freie schweflige Säure widerstandsfähige Gärhefe. Mitt Gebiete Lebensmittelunters Hyg 15, 5–28.
    [Google Scholar]
  33. Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. ( 2006; ). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208.[CrossRef]
    [Google Scholar]
  34. Richard, G. F. & Dujon, B. ( 2006; ). Molecular evolution of minisatellites in hemiascomycetous yeasts. Mol Biol Evol 23, 189–202.
    [Google Scholar]
  35. Richard, G. F. & Pâques, F. ( 2000; ). Mini- and microsatellite expansions: the recombination connection. EMBO Rep 1, 122–126.[CrossRef]
    [Google Scholar]
  36. Rost, B., Yachdav, G. & Liu, J. ( 2003; ). The PredictProtein Server. Nucleic Acids Res 32 (Web Server issue), W321–W326.
    [Google Scholar]
  37. Rozen, S. & Skaletsky, H. J. ( 2000; ). Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365–386. Edited by S. Krawetz & S. Misener. Totowa, NJ: Humana Press.
  38. Schlake, T. & Gutz, H. ( 1993; ). Mating configurations in Schizosaccharomyces pombe strains of different geographical origins. Curr Genet 23, 108–114.[CrossRef]
    [Google Scholar]
  39. Singh, G. & Klar, A. J. ( 2003; ). DNA sequence of the mat2,3 region of Schizosaccharomyces kambucha shares high homology with the corresponding sequence from Sz. pombe. Yeast 20, 1273–1278.[CrossRef]
    [Google Scholar]
  40. Sipiczki, M. ( 2000; ). Where does fission yeast sit on the tree of life? Genome Biol 1, reviews 1011.1–1011.4.
    [Google Scholar]
  41. Steiner, W. W. & Smith, G. R. ( 2005; ). Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26. Mol Cell Biol 25, 9054–9062.[CrossRef]
    [Google Scholar]
  42. Stiller, J. W. & Hall, B. D. ( 2002; ). Evolution of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 99, 6091–6096.[CrossRef]
    [Google Scholar]
  43. Strand, M., Prolla, T. A., Liskay, R. M. & Petes, T. D. ( 1993; ). Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276.[CrossRef]
    [Google Scholar]
  44. Sunnerhagen, P. ( 2002; ). Prospects for functional genomics in Schizosaccharomyces pombe. Curr Genet 42, 73–84.[CrossRef]
    [Google Scholar]
  45. Sutherland, G. R. & Richards, R. I. ( 1995; ). Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A 92, 3636–3641.[CrossRef]
    [Google Scholar]
  46. Takahashi, K., Murakami, S., Chikashige, Y., Funabiki, H., Niwa, O. & Yanagida, M. ( 1992; ). A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3, 819–835.[CrossRef]
    [Google Scholar]
  47. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  48. Tompa, P. ( 2003; ). Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25, 847–855.[CrossRef]
    [Google Scholar]
  49. Tóth, G., Gaspari, Z. & Jurka, J. ( 2000; ). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10, 967–981.[CrossRef]
    [Google Scholar]
  50. Vaughan Martini, A. ( 1991; ). Evaluation of phylogenetic relationships among fission yeast by nDNA/nDNA reassociation and conventional taxonomic criteria. Yeast 7, 73–78.[CrossRef]
    [Google Scholar]
  51. Vergnaud, G. & Denoeud, F. ( 2000; ). Minisatellites: mutability and genome architecture. Genome Res 10, 899–907.[CrossRef]
    [Google Scholar]
  52. Verstrepen, K. J., Jansen, A., Lewitter, F. & Fink, G. R. ( 2005; ). Intragenic tandem repeats generate functional variability. Nat Genet 37, 986–990.[CrossRef]
    [Google Scholar]
  53. Viguera, E., Canceill, D. & Ehrlich, S. D. ( 2001; ). Replication slippage involves DNA polymerase pausing and dissociation. EMBO J 20, 2587–2595.[CrossRef]
    [Google Scholar]
  54. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F. & Jones, D. T. ( 2004; ). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337, 635–645.[CrossRef]
    [Google Scholar]
  55. Wood, V., Gwilliam, R., Rajandream, M. A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J., Peat, N., Hayles, J. & other authors ( 2002; ). The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880.[CrossRef]
    [Google Scholar]
  56. Zimmer, M., Welser, F., Oraler, G. & Wolf, K. ( 1987; ). Distribution of mitochondrial introns in the species Schizosaccharomyces pombe and the origin of the group II intron in the gene encoding apocytochrome b. Curr Genet 12, 329–336.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001669-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001669-0
Loading

Data & Media loading...

Supplements

Alignment of sequenced PCR products for tandem repeat marker locus within the protein coding sequence of for isolates 975 and CBS356. The sequence for 975 is identical to the published 972 h sequence (Wood et al., 2002). The 21 bp repeated units are indicated by arrows. [ PDF] (14 kb) Alignment of sequenced PCR products for tandem repeat marker locus within the protein coding sequence of SPCC330.04c for isolates 972 , CBS356 and CBS2775. The sequence for 972 is identical to that of the published sequence (Wood , 2002). The 21 bp and 33 bp repeated units are indicated by arrows. [ PDF] (14 kb) Polymorphism of minisatellite tandem repeat locus in laboratory strains. (a) PCR amplification products of tandem repeat locus within the protein coding sequence of analysed by agarose gel electrophoresis for laboratory strains: lane 1, 972 ; lane 2, 975 ; lane 3, SJA148; lane 4, SJA167; lane 5, SJA122; lane 6, SJA272; lane 7, SJA237; lane 8, SJA175; lane 9, SJA277; lane 10, SJA244; lane 11, SJA216; lane 12, SJA273; lane 13, SJA120; lane 14, SJA238; lane 15, SJA300; lane 16, SJA302. (b) Alignment of the published 972 sequence (Wood et al., 2002) with sequenced PCR products for strains 975 and SJA302. The 24 bp repeated units are indicated by arrows. [ PDF] (34 kb)

PDF

Alignment of sequenced PCR products for tandem repeat marker locus within the protein coding sequence of for isolates 975 and CBS356. The sequence for 975 is identical to the published 972 h sequence (Wood et al., 2002). The 21 bp repeated units are indicated by arrows. [ PDF] (14 kb) Alignment of sequenced PCR products for tandem repeat marker locus within the protein coding sequence of SPCC330.04c for isolates 972 , CBS356 and CBS2775. The sequence for 972 is identical to that of the published sequence (Wood , 2002). The 21 bp and 33 bp repeated units are indicated by arrows. [ PDF] (14 kb) Polymorphism of minisatellite tandem repeat locus in laboratory strains. (a) PCR amplification products of tandem repeat locus within the protein coding sequence of analysed by agarose gel electrophoresis for laboratory strains: lane 1, 972 ; lane 2, 975 ; lane 3, SJA148; lane 4, SJA167; lane 5, SJA122; lane 6, SJA272; lane 7, SJA237; lane 8, SJA175; lane 9, SJA277; lane 10, SJA244; lane 11, SJA216; lane 12, SJA273; lane 13, SJA120; lane 14, SJA238; lane 15, SJA300; lane 16, SJA302. (b) Alignment of the published 972 sequence (Wood et al., 2002) with sequenced PCR products for strains 975 and SJA302. The 24 bp repeated units are indicated by arrows. [ PDF] (34 kb)

PDF

Alignment of sequenced PCR products for tandem repeat marker locus within the protein coding sequence of for isolates 975 and CBS356. The sequence for 975 is identical to the published 972 h sequence (Wood et al., 2002). The 21 bp repeated units are indicated by arrows. [ PDF] (14 kb) Alignment of sequenced PCR products for tandem repeat marker locus within the protein coding sequence of SPCC330.04c for isolates 972 , CBS356 and CBS2775. The sequence for 972 is identical to that of the published sequence (Wood , 2002). The 21 bp and 33 bp repeated units are indicated by arrows. [ PDF] (14 kb) Polymorphism of minisatellite tandem repeat locus in laboratory strains. (a) PCR amplification products of tandem repeat locus within the protein coding sequence of analysed by agarose gel electrophoresis for laboratory strains: lane 1, 972 ; lane 2, 975 ; lane 3, SJA148; lane 4, SJA167; lane 5, SJA122; lane 6, SJA272; lane 7, SJA237; lane 8, SJA175; lane 9, SJA277; lane 10, SJA244; lane 11, SJA216; lane 12, SJA273; lane 13, SJA120; lane 14, SJA238; lane 15, SJA300; lane 16, SJA302. (b) Alignment of the published 972 sequence (Wood et al., 2002) with sequenced PCR products for strains 975 and SJA302. The 24 bp repeated units are indicated by arrows. [ PDF] (34 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error