1887

Abstract

The structure of the major peptide produced by cf. NIVA-CYA 172/5, the halogenated heptapeptide cyanopeptolin-984, was determined using LC/MS/MS. A gene cluster encoding a peptide synthetase putatively producing a cyanopeptolin was cloned from the same strain and sequenced. The cluster consists of four genes encoding peptide synthetases and one gene encoding a halogenase. Two additional ORFs transcribed in the opposite direction were found in the 5′ flanking sequence; one of these encodes an ABC transporter. The overall organization of the cyanopeptolin synthetase operon () resembles a previously analysed anabaenopeptilide synthetase operon () from strain 90. Phylogenetic analyses of the individual domains from Mcn, Apd and other cyanobacterial peptide synthetases showed clustering of the adenylation domains according to function irrespective of operon origin – indicating strong functional constraints across peptide synthetases. In contrast, the condensation and thiolation domains to a large extent grouped according to operon affiliation or position in the respective operons. Phylogenetic analyses of condensation domains indicated that N-terminal domains and domains that condense -amino acids and -amino acids, respectively, form three separate groups. Although recombination events are likely to be involved in the evolution of , no clear evidence of genetic recombination between the two cyanopeptolin gene clusters was found. Within the genus , microcystin and cyanopeptolin synthetases have an evolutionary history of genomic coexistence. However, the data indicated that the two classes of peptide synthetase gene clusters have evolved independently.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001123-0
2007-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1382.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001123-0&mimeType=html&fmt=ahah

References

  1. Becker, J. E., Moore, R. E. & Moore, B. S. ( 2004; ). Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 325, 35–42.[CrossRef]
    [Google Scholar]
  2. Billich, A. & Zocher, R. ( 1987; ). Enzymatic synthesis of cyclosporin A. J Biol Chem 262, 17258–17259.
    [Google Scholar]
  3. Birk, I. M., Dierstein, R., Kaiser, I., Matern, U., König, W. A., Krebber, R. & Weckesser, J. ( 1989; ). Nontoxic and toxic oligopeptides with d-amino acids and unusual residues in Microcystis aeruginosa PCC 7806. Arch Microbiol 151, 411–415.[CrossRef]
    [Google Scholar]
  4. Bister, B., Keller, S., Baumann, H. I., Nicholson, G., Weist, S., Jung, G., Süssmuth, R. D. & Jüttner, F. ( 2004; ). Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J Nat Prod 67, 1755–1757.[CrossRef]
    [Google Scholar]
  5. Challis, G. L., Ravel, J. & Townsend, C. A. ( 2000; ). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211–224.[CrossRef]
    [Google Scholar]
  6. Chiu, H. T., Hubbard, B. K., Shah, A. N., Eide, J., Fredenburg, R. A., Walsh, C. T. & Khosla, C. ( 2001; ). Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci U S A 98, 8548–8553.[CrossRef]
    [Google Scholar]
  7. Christiansen, G., Fastner, J., Erhard, M., Börner, T. & Dittmann, E. ( 2003; ). Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185, 564–572.[CrossRef]
    [Google Scholar]
  8. Christiansen, G., Kurmayer, R., Liu, Q. & Börner, T. ( 2006; ). Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72, 117–123.[CrossRef]
    [Google Scholar]
  9. Conti, E., Stachelhaus, T., Marahiel, M. A. & Brick, P. ( 1997; ). Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16, 4174–4183.[CrossRef]
    [Google Scholar]
  10. Dassa, E. & Hofnung, M. ( 1985; ). Homologies between integral proteins of the inner membrane of binding protein transport systems in enterobacteria. Ann Inst Pasteur Microbiol 136A, 281–288.
    [Google Scholar]
  11. Fastner, J., Erhard, M. & von Döhren, H. ( 2001; ). Determination of oligopeptide diversity within a natural population of Microcystis spp. (cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 67, 5069–5076.[CrossRef]
    [Google Scholar]
  12. Finking, R. & Marahiel, M. A. ( 2004; ). Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58, 453–488.[CrossRef]
    [Google Scholar]
  13. Fujii, K., Harada, K.-I., Suzuki, M., Kondo, F., Ikai, Y., Oka, H. & Sivonen, K. ( 1996; ). Novel cyclic peptides together with microcystins produced by toxic cyanobacteria. In Harmful and Toxic Algal Blooms, pp. 559–562. Edited by T. Yatsumoto, Y. Oshima & Y. Fukuyo. Paris: Intergovernmental Oceanographic Commission of UNESCO.
  14. Hammer, P. E., Hill, D. S., Lam, S. T., Van Pee, K. H. & Ligon, J. M. ( 1997; ). Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63, 2147–2154.
    [Google Scholar]
  15. Hoffmann, D., Hevel, J. M., Moore, R. E. & Moore, B. S. ( 2003; ). Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311, 171–180.[CrossRef]
    [Google Scholar]
  16. Ishida, K., Murakami, M., Matsuda, H. & Yamaguchi, K. ( 1995; ). Micropeptin-90, a plasmin and trypsin-inhibitor from the blue-green-alga Microcystis aeruginosa (NIES-90). Tetrahedron Lett 36, 3535–3538.[CrossRef]
    [Google Scholar]
  17. Ishida, K., Matsuda, H. & Murakami, M. ( 1998; ). Micropeptins 88-A to 88-F, chymotrypsin inhibitors from the cyanobacterium Microcystis aeruginosa (NIES-88). Tetrahedron 54, 5545–5556.[CrossRef]
    [Google Scholar]
  18. Ishitsuka, M. O., Kusumi, T., Kakisawa, H., Kaya, K. & Watanabe, M. ( 1990; ). Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis. J Am Chem Soc 112, 8180–8182.[CrossRef]
    [Google Scholar]
  19. Kaebernick, M., Neilan, B. A., Börner, T. & Dittmann, E. ( 2000; ). Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66, 3387–3392.[CrossRef]
    [Google Scholar]
  20. Konz, D., Doekel, S. & Marahiel, M. A. ( 1999; ). Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181, 133–140.
    [Google Scholar]
  21. Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. ( 2004; ). Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6, 831–841.[CrossRef]
    [Google Scholar]
  22. Lee, A. Y., Smitka, T. A., Bonjouklian, R. & Clardy, J. ( 1994; ). Atomic structure of the trypsin-A90720A complex: a unified approach to structure and function. Chem Biol 1, 113–117.[CrossRef]
    [Google Scholar]
  23. Linne, U., Doekel, S. & Marahiel, M. A. ( 2001; ). Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry 40, 15824–15834.[CrossRef]
    [Google Scholar]
  24. Malo, M. S., Srivastava, K., Andresen, J. M., Chen, X. N., Korenberg, J. R. & Ingram, V. M. ( 1994; ). Targeted gene walking by low stringency polymerase chain reaction: assignment of a putative human brain sodium channel gene (SCN3A) to chromosome 2q24-31. Proc Natl Acad Sci U S A 91, 2975–2979.[CrossRef]
    [Google Scholar]
  25. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. ( 1997; ). Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97, 2651–2674.[CrossRef]
    [Google Scholar]
  26. Martin, C., Sivonen, K., Matern, U., Dierstein, R. & Weckesser, J. ( 1990; ). Rapid purification of the peptide toxins microcystin-LR and nodularin. FEMS Microbiol Lett 56, 1–5.
    [Google Scholar]
  27. Martin, C., Oberer, K., Ino, T., König, W. A., Busch, M. & Weckesser, J. ( 1993; ). Cyanopeptolines, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. J Antibiot 46, 1550–1556.[CrossRef]
    [Google Scholar]
  28. Matern, U., Schleberger, C., Jelakovic, S., Weckesser, J. & Schulz, G. E. ( 2003; ). Binding structure of elastase inhibitor scyptolin A. Chem Biol 10, 997–1001.[CrossRef]
    [Google Scholar]
  29. Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., Davies, W., Gabrielsen, T. M., Rudi, K. & Jakobsen, K. S. ( 2003; ). Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185, 2774–2785.[CrossRef]
    [Google Scholar]
  30. Moffitt, M. C. & Neilan, B. A. ( 2004; ). Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70, 6353–6362.[CrossRef]
    [Google Scholar]
  31. Murakami, M., Kodani, S., Ishida, K., Matsuda, H. & Yamaguchi, K. ( 1997; ). Micropeptin 103, a chymotrypsin inhibitor from the cyanobacterium Microcystis viridis (NIES-103). Tetrahedron Lett 38, 3035–3038.[CrossRef]
    [Google Scholar]
  32. Namikoshi, M. & Rinehart, K. L. ( 1996; ). Bioactive compounds produced by cyanobacteria. J Ind Microbiol Biotechnol 17, 373–384.[CrossRef]
    [Google Scholar]
  33. Neilan, B. A., Dittmann, E., Rouhiainen, L., Bass, R. A., Schaub, V., Sivonen, K. & Börner, T. ( 1999; ). Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 181, 4089–4097.
    [Google Scholar]
  34. Nishizawa, T., Ueda, A., Asayama, M., Fujii, K., Harada, K., Ochi, K. & Shirai, M. ( 2000; ). Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127, 779–789.[CrossRef]
    [Google Scholar]
  35. Nishizawa, T., Asayama, M. & Shirai, M. ( 2001; ). Cyclic heptapeptide microcystin biosynthesis requires the glutamate racemase gene. Microbiology 147, 1235–1241.
    [Google Scholar]
  36. Nogami, T., Shigihara, Y., Matsuda, N., Takahashi, Y., Naganawa, H., Nakamura, H., Hamada, M., Muraoka, Y., Takita, T. & other authors ( 1990; ). Neopyrrolomycin, a new chlorinated phenylpyrrole antibiotic. J Antibiot 43, 1192–1194.[CrossRef]
    [Google Scholar]
  37. Nowak-Thompson, B., Chaney, N., Wing, J. S., Gould, S. J. & Loper, J. E. ( 1999; ). Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181, 2166–2174.
    [Google Scholar]
  38. Otsuka, M., Ichinose, K., Fujii, I. & Ebizuka, Y. ( 2004; ). Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in Streptomyces carzinostaticus. Antimicrob Agents Chemother 48, 3468–3476.[CrossRef]
    [Google Scholar]
  39. Pelzer, S., Süssmuth, R., Heckmann, D., Recktenwald, J., Huber, P., Jung, G. & Wohlleben, W. ( 1999; ). Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43, 1565–1573.
    [Google Scholar]
  40. Rantala, A., Fewer, D. P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T. & Sivonen, K. ( 2004; ). Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101, 568–573.[CrossRef]
    [Google Scholar]
  41. Ronquist, F. & Huelsenbeck, J. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  42. Rouhiainen, L., Paulin, L., Suomalainen, S., Hyytiäinen, H., Buikema, W., Haselkorn, R. & Sivonen, K. ( 2000; ). Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37, 156–167.[CrossRef]
    [Google Scholar]
  43. Rouhiainen, L., Vakkilainen, T., Siemer, B. L., Buikema, W., Haselkorn, R. & Sivonen, K. ( 2004; ). Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70, 686–692.[CrossRef]
    [Google Scholar]
  44. Rudi, K., Skulberg, O. M. & Jakobsen, K. S. ( 1998; ). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180, 3453–3461.
    [Google Scholar]
  45. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Sancelme, M., Fabre, S. & Prudhomme, M. ( 1994; ). Antimicrobial activities of indolocarbazole and bis-indole protein kinase C inhibitors. J Antibiot 47, 792–798.[CrossRef]
    [Google Scholar]
  47. Scrutton, N. S., Berry, A. & Perham, R. N. ( 1990; ). Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343, 38–43.[CrossRef]
    [Google Scholar]
  48. Sieber, S. A. & Marahiel, M. A. ( 2005; ). Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105, 715–738.[CrossRef]
    [Google Scholar]
  49. Sielaff, H., Dittmann, E., Tandeau De Marsac, N., Bouchier, C., Von Döhren, H., Börner, T. & Schwecke, T. ( 2003; ). The mcyF gene of the microcystin biosynthetic gene cluster from Microcystis aeruginosa encodes an aspartate racemase. Biochem J 373, 909–916.[CrossRef]
    [Google Scholar]
  50. Skulberg, R. & Skulberg, O. M. ( 1990; ). Research with Algal Cultures. Oslo, Norway: NIVA's Culture Collection of Algae.
  51. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. ( 1999; ). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493–505.[CrossRef]
    [Google Scholar]
  52. Tanabe, Y., Kaya, K. & Watanabe, M. M. ( 2004; ). Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58, 633–641.[CrossRef]
    [Google Scholar]
  53. Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F. & Higgins, D. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  54. Tillett, D., Dittmann, E., Erhard, M., von Döhren, H., Börner, T. & Neilan, B. A. ( 2000; ). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7, 753–764.[CrossRef]
    [Google Scholar]
  55. Tsuge, K., Akiyama, T. & Shoda, M. ( 2001; ). Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183, 6265–6273.[CrossRef]
    [Google Scholar]
  56. van Pee, K. H. & Unversucht, S. ( 2003; ). Biological dehalogenation and halogenation reactions. Chemosphere 52, 299–312.[CrossRef]
    [Google Scholar]
  57. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. ( 1982; ). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945–951.
    [Google Scholar]
  58. Weckwerth, W., Miyamoto, K., Iinuma, K., Krause, M., Glinski, M., Storm, T., Bonse, G., Kleinkauf, H. & Zocher, R. ( 2000; ). Biosynthesis of PF1022A and related cyclooctadepsipeptides. J Biol Chem 275, 17909–17915.[CrossRef]
    [Google Scholar]
  59. Welker, M. & von Döhren, H. ( 2006; ). Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30, 530–563.[CrossRef]
    [Google Scholar]
  60. Welker, M., Maršálek, B., Sejnohová, L. & van Döhren, H. ( 2006; ). Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27, 2090–2103.[CrossRef]
    [Google Scholar]
  61. Yakimov, M. M., Kröger, A., Slepak, T. N., Giuliano, L., Timmis, K. N. & Golyshin, P. N. ( 1998; ). A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim Biophys Acta 1399, 141–153.[CrossRef]
    [Google Scholar]
  62. Yasuno, M., Sugaya, Y., Kaya, K. & Watanabe, M. ( 1998; ). Variations in the toxicity of Microcystis species to Moina macrocopa. Phycol Res 46, 31–36.[CrossRef]
    [Google Scholar]
  63. Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F. & Papke, R. T. ( 2006; ). Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16, 1099–1108.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001123-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001123-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1382 - 1393

[ PDF] (2184 kb): Results of initial screening of cf. NIVA-CYA 172/5 for oligopeptides. Comparison of the putative halogenase McnD with known halogenases associated with secondary metabolite biosynthetic gene clusters: ApdC from anabaenopeptilide synthetase in strain 90; BhaA from balhimycin synthetase in ; PrnC from pyoluteorin synthetase in ; PltM from pyrrolnitrile synthetase in ; ComH from complestatin synthetase in . Comparison of putative ABC transporter McnF with other ABC transporters associated with non-ribosomal peptide synthetase genes from different cyanobacteria: NosG from sp. GSV224 nostopeptolide A synthetase; NcpC from the nostocyclopeptide biosynthesis gene cluster of sp. ATCC 53789; NdaI from the nodularin synthetase from ; and McyH-P, McyH-M and McyH-A (McyH from , PCC 7806 and strain 90, respectively). Phylogenetic analysis of T-domains from different cyanobacterial peptide synthetases. Domains are indicated as: Mcn, cyanopeptolin-984 synthetase from cf. ; Apd, anabaenopeptilide synthetase from strain 90; Nos, nostopeptolide A synthetase from sp. GSV224; Ncp, nostocyclopeptide synthetase from sp. ATCC 53789; Mcy, microcystin synthetase from PCC 7806 and Nda, the nodularin synthetase from . PP values over 0.70 are shown. T-domains located upstream of epimerization, condensation and thioesterase domains are indicated as TE, TC and TTE, respectively.



PDF

vol. , part 5, pp. 1382 - 1393

Due to a mistake during data processing, the putative substrate-binding pocket sequences of two of the adenylation domains were switched. Consequently, the structure of the peptide (cyanopeptolin-984) produced by NIVA-CYA 172/5 (N-C 172/5) shown in Fig. 1 is incorrect in the positioning of two amino acid residues. The underlying experimental data and the molecular mass of cyanopeptolin-984 were, however, correct. Fig. 1 showing the corrected peptide structure and corrected Tables 1 and 2 are shown in the accompanying PDF(85 kb). It should be noted that the phylogenetic tree of adenylation domain sequences (Fig. 3) is correct, but the designations for McnC1-Ile/Thr and McnE-Gln/Ile should have read McnC1-Gln/Thr and McnE-Ile, respectively. This correction makes interpretation of the phylogenetic tree more straightforward, and has no impact on the major conclusions of the paper.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error