1887

Abstract

MarA, SoxS and Rob are transcription factors belonging to the AraC family. While these proteins have been associated historically with control of multiple antibiotic resistance, and tolerance to oxidative stress agents and organic solvents, only a paucity of experimental data support a role in regulating virulence. Clinical isolates, and isogenic strains lacking , and , were studied in a murine model of ascending pyelonephritis, which is a clinically relevant model of urinary tract infection. Organisms lacking all three transcription factors (triple knockouts) were significantly less virulent than parental strains, and complementation studies demonstrated that the addition of , and individually restored wild-type virulence in the triple-knockout strain. Deletion of or alone was more detrimental than the removal of . Thus, all three proteins contribute to virulence .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000604-0
2006-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3643.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000604-0&mimeType=html&fmt=ahah

References

  1. Alekshun, M. N. & Levy, S. B. ( 1999; ). The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7, 410–413.[CrossRef]
    [Google Scholar]
  2. Alekshun, M. N. & Levy, S. B. ( 2004; ). The Escherichia coli mar locus – antibiotic resistance and more. ASM News 70, 451–456.
    [Google Scholar]
  3. Alekshun, M. N. & Levy, S. B. ( 2005; ). Targeting virulence to prevent infection: to kill or not to kill? Drug Discov Today 1, 483–489.
    [Google Scholar]
  4. Anderson, G. G., Palermo, J. J., Schilling, J. D., Roth, R., Heuser, J. & Hultgren, S. J. ( 2003; ). Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107.[CrossRef]
    [Google Scholar]
  5. Ariza, R. R., Li, Z., Ringstad, N. & Demple, B. ( 1995; ). Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 177, 1655–1661.
    [Google Scholar]
  6. Bahrani-Mougeot, F. K., Buckles, E. L., Lockatell, C. V., Hebel, J. R., Johnson, D. E., Tang, C. M. & Donnenberg, M. S. ( 2002; ). Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45, 1079–1093.[CrossRef]
    [Google Scholar]
  7. Barbosa, T. M. & Levy, S. B. ( 2000; ). Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182, 3467–3474.[CrossRef]
    [Google Scholar]
  8. Bennik, M. H., Pomposiello, P. J., Thorne, D. F. & Demple, B. ( 2000; ). Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J Bacteriol 182, 3794–3801.[CrossRef]
    [Google Scholar]
  9. Bieber, D., Ramer, S. W., Wu, C. Y., Murray, W. J., Tobe, T., Fernandez, R. & Schoolnik, G. K. ( 1998; ). Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114–2118.[CrossRef]
    [Google Scholar]
  10. Bina, J., Zhu, J., Dziejman, M., Faruque, S., Calderwood, S. & Mekalanos, J. ( 2003; ). ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci U S A 100, 2801–2806.[CrossRef]
    [Google Scholar]
  11. Brzuszkiewicz, E., Bruggemann, H., Liesegang, H. & 10 other authors ( 2006; ). How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 103, 12879–12884.[CrossRef]
    [Google Scholar]
  12. Champion, G. A., Neely, M. N., Brennan, M. A. & DiRita, V. J. ( 1997; ). A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol Microbiol 23, 323–331.[CrossRef]
    [Google Scholar]
  13. Dattelbaum, J. D., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. ( 2003; ). UreR, the transcriptional activator of the Proteus mirabilis urease gene cluster, is required for urease activity and virulence in experimental urinary tract infections. Infect Immun 71, 1026–1030.[CrossRef]
    [Google Scholar]
  14. Elliott, S. J. & Kaper, J. B. ( 1997; ). Role of type 1 fimbriae in EPEC infections. Microb Pathog 23, 113–118.[CrossRef]
    [Google Scholar]
  15. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. ( 2003; ). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47, 103–118.
    [Google Scholar]
  16. Fetherston, J. D., Bearden, S. W. & Perry, R. D. ( 1996; ). YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol Microbiol 22, 315–325.[CrossRef]
    [Google Scholar]
  17. Finlay, B. B. & Falkow, S. ( 1997; ). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61, 136–169.
    [Google Scholar]
  18. Flashner, Y., Mamroud, E., Tidhar, A. & 10 other authors ( 2004; ). Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun 72, 908–915.[CrossRef]
    [Google Scholar]
  19. Frota, C. C., Papavinasasundaram, K. G., Davis, E. O. & Colston, M. J. ( 2004; ). The AraC family transcriptional regulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis. Infect Immun 72, 5483–5486.[CrossRef]
    [Google Scholar]
  20. Garrity-Ryan, L., Kazmierczak, B., Kowal, R., Comolli, J., Hauser, A. & Engel, J. N. ( 2000; ). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68, 7100–7113.[CrossRef]
    [Google Scholar]
  21. George, A. M. & Levy, S. B. ( 1983a; ). Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155, 531–540.
    [Google Scholar]
  22. George, A. M. & Levy, S. B. ( 1983b; ). Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 155, 541–548.
    [Google Scholar]
  23. Hauser, A. R., Kang, P. J. & Engel, J. N. ( 1998; ). PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27, 807–818.[CrossRef]
    [Google Scholar]
  24. Hava, D. & Camilli, A. ( 2002; ). Large-scale identificationof serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45, 1389–1406.
    [Google Scholar]
  25. Hedlund, M., Wachtler, C., Johansson, E., Hang, L., Somerville, J. E., Darveau, R. P. & Svanborg, C. ( 1999; ). P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol Microbiol 33, 693–703.[CrossRef]
    [Google Scholar]
  26. Hopkins, W. J., Hall, J. A., Conway, B. P. & Uehling, D. T. ( 1995; ). Induction of urinary tract infection by intraurethral inoculation with Escherichia coli: refining the murine model. J Infect Dis 171, 462–465.[CrossRef]
    [Google Scholar]
  27. Hopkins, W. J., Gendron-Fitzpatrick, A., Balish, E. & Uehling, D. T. ( 1998; ). Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect Immun 66, 2798–2802.
    [Google Scholar]
  28. Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. ( 2005; ). Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310, 670–674.[CrossRef]
    [Google Scholar]
  29. Hvidberg, H., Struve, C., Krogfelt, K. A., Christensen, N., Rasmussen, S. N. & Frimodt-Moller, N. ( 2000; ). Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob Agents Chemother 44, 156–163.[CrossRef]
    [Google Scholar]
  30. Kerrn, M. B., Frimodt-Moller, N. & Espersen, F. ( 2003; ). Effects of sulfamethizole and amdinocillin against Escherichia coli strains (with various susceptibilities) in an ascending urinary tract infection mouse model. Antimicrob Agents Chemother 47, 1002–1009.[CrossRef]
    [Google Scholar]
  31. Kolter, R., Inuzuka, M. & Helinski, D. R. ( 1978; ). Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. Cell 15, 1199–1208.[CrossRef]
    [Google Scholar]
  32. Koutsolioutsou, A., Martins, E. A., White, D. G., Levy, S. B. & Demple, B. ( 2001; ). A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (serovar Typhimurium). Antimicrob Agents Chemother 45, 38–43.[CrossRef]
    [Google Scholar]
  33. Linde, H. J., Notka, F., Metz, M., Kochanowski, B., Heisig, P. & Lehn, N. ( 2000; ). In vivo increase in resistance to ciprofloxacin in Escherichia coli associated with deletion of the C-terminal part of marR. Antimicrob Agents Chemother 44, 1865–1868.[CrossRef]
    [Google Scholar]
  34. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  35. Maneewannakul, K. & Levy, S. B. ( 1996; ). Identification of mar mutants among quinolone-resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother 40, 1695–1698.
    [Google Scholar]
  36. Martin, R. G. & Rosner, J. L. ( 2003; ). Analysis of microarray data for the marA, soxS, and rob regulons of Escherichia coli. Methods Enzymol 370, 278–280.
    [Google Scholar]
  37. Martin, R. G., Gillette, W. K. & Rosner, J. L. ( 2000; ). Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 35, 623–634.
    [Google Scholar]
  38. Otto, K., Norbeck, J., Larsson, T., Karlsson, K. A. & Hermansson, M. ( 2001; ). Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J Bacteriol 183, 2445–2453.[CrossRef]
    [Google Scholar]
  39. Piddock, L. J. ( 2006; ). Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4, 629–636.[CrossRef]
    [Google Scholar]
  40. Pomposiello, P. J. & Demple, B. ( 2000; ). Identification of SoxS-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 182, 23–29.[CrossRef]
    [Google Scholar]
  41. Pomposiello, P. J., Bennik, M. H. & Demple, B. ( 2001; ). Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183, 3890–3902.[CrossRef]
    [Google Scholar]
  42. Randall, L. P. & Woodward, M. J. ( 2001; ). Role of the mar locus in virulence of Salmonella enterica serovar Typhimurium DT104 in chickens. J Med Microbiol 50, 770–779.
    [Google Scholar]
  43. Rippere-Lampe, K. E., O'Brien, A. D., Conran, R. & Lockman, H. A. ( 2001; ). Mutation of the gene encoding cytotoxic necrotizing factor type 1 [cnf(1)] attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69, 3954–3964.[CrossRef]
    [Google Scholar]
  44. Ruiz, J., Simon, K., Horcajada, J. P. & 8 other authors ( 2002; ). Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. J Clin Microbiol 40, 4445–4449.[CrossRef]
    [Google Scholar]
  45. Russo, T. A., McFadden, C. D., Carlino-MacDonald, U. B., Beanan, J. M., Barnard, T. J. & Johnson, J. R. ( 2002; ). IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70, 7156–7160.[CrossRef]
    [Google Scholar]
  46. Schilling, J. D., Lorenz, R. G. & Hultgren, S. J. ( 2002; ). Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70, 7042–7049.[CrossRef]
    [Google Scholar]
  47. Schneiders, T., Barbosa, T. M., McMurry, L. M. & Levy, S. B. ( 2003; ). The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA. J Biol Chem 279, 9037–9042.
    [Google Scholar]
  48. Simon, R., Priefer, U. & Puehler, A. ( 1983; ). A broad host range mobilizing system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  49. Snyder, J. A., Haugen, B. J., Buckles, E. L., Lockatell, C. V., Johnson, D. E., Donnenberg, M. S., Welch, R. A. & Mobley, H. L. ( 2004; ). Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72, 6373–6381.[CrossRef]
    [Google Scholar]
  50. Sukupolvi, S. & O'Connor, C. D. ( 1990; ). TraT lipoprotein, a plasmid-specified mediator of interactions between Gram-negative bacteria and their environment. Microbiol Rev 54, 331–341.
    [Google Scholar]
  51. Sulavik, M. C., Dazer, M. & Miller, P. F. ( 1997; ). The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its requirement for virulence. J Bacteriol 179, 1857–1866.
    [Google Scholar]
  52. Torres, A. G., Redford, P., Welch, R. A. & Payne, S. M. ( 2001; ). TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69, 6179–6185.[CrossRef]
    [Google Scholar]
  53. Valdivia, R. H. & Falkow, S. ( 1996; ). Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22, 367–378.[CrossRef]
    [Google Scholar]
  54. van der Straaten, T., Zulianello, L., van Diepen, A., Granger, D. L., Janssen, R. & van Dissel, J. T. ( 2004; ). Salmonella enterica serovar Typhimurium RamA, intracellular oxidative stress response, and bacterial virulence. Infect Immun 72, 996–1003.[CrossRef]
    [Google Scholar]
  55. Westphal, O. & Jann, K. ( 1965; ). Bacterial lipopolysaccharides. Extraction with phenol–water and further applications of the procedure. Methods Carbohydr Chem 5, 83–91.
    [Google Scholar]
  56. Wolfgang, M. C., Lee, V. T., Gilmore, M. E. & Lory, S. ( 2003; ). Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 4, 253–263.[CrossRef]
    [Google Scholar]
  57. Wu, J. & Weiss, B. ( 1991; ). Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J Bacteriol 173, 2864–2871.
    [Google Scholar]
  58. Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y. & Yoshida, O. ( 1995; ). Distribution of virulence factors in Escherichia coli isolated from urine of cystitis patients. Microbiol Immunol 39, 401–404.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000604-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000604-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error