1887

Abstract

Osmoregulated periplasmic glucans (OPGs) are general constituents of the envelope of Gram-negative bacteria. They are required for full virulence of bacterial phytopathogens such as , and . is a pectinolytic -proteobacterium that causes soft rot disease on a wide range of plant species. In addition to the loss of virulence, mutants exhibit a pleiotropic phenotype that affects motility, bile-salt resistance, exoenzyme secretion, exopolysaccharide synthesis and membrane lipid composition. This is believed to be the first proteomic analysis of an OPG-defective mutant of and it revealed that, in addition to the effects described, catabolic enzyme synthesis was enhanced and there was a greater abundance of some proteins catalysing the folding and degradation of proteins needed for various stress responses. Thus, in the mutant strain, loss of virulence was the result of a combination of envelope structure changes and cellular metabolism modifications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000372-0
2007-03-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/760.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000372-0&mimeType=html&fmt=ahah

References

  1. Behari J., Stagon L., Calderwood S. B.. 2001; pepA , a gene mediating pH regulation of virulence genes in Vibrio cholerae . J Bacteriol183:178–188[CrossRef]
    [Google Scholar]
  2. Bohin J.-P.. 2000; Osmoregulated periplasmic glucans in Proteobacteria – a minireview. FEMS Microbiol Lett186:11–19[CrossRef]
    [Google Scholar]
  3. Bohin A., Bouchart F., Richet C., Kol O., Leroy Y., Timmerman P., Huet G., Bohin J.-P., Zanetta J.-P.. 2005; GC/MS identification and quantification of constituents of bacterial lipids and glycoconjugates obtained after methanolysis as heptafluorobutyrate derivatives. Anal Biochem340:231–244[CrossRef]
    [Google Scholar]
  4. Bohin J.-P., Lacroix J.-M.. 2006; Osmoregulation in the periplasm. In The Periplasm pp325–341 Edited by Ehrmann M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  6. Cianciotto N. P., Eisenstein B. I., Mody C. H., Engelberg N. C.. 1990; A mutation in the mip gene results in an attenuation of Legionella pneumophila virulence. J Infect Dis162:121–126[CrossRef]
    [Google Scholar]
  7. Cogez V., Talaga P., Lemoine J., Bohin J.-P.. 2001; Osmoregulated periplasmic glucans of Erwinia chrysanthemi . J Bacteriol183:3127–3133[CrossRef]
    [Google Scholar]
  8. Dartigalongue C., Missiakas D., Raina S.. 2001; Characterization of the Escherichia coli sigma E regulon. J Biol Chem276:20866–20875[CrossRef]
    [Google Scholar]
  9. Deuerling E., Schulze-Specking A., Tomoyasu T., Mogk A., Bukau B.. 1999; Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature400:693–696[CrossRef]
    [Google Scholar]
  10. Hoffmann F., Weber J., Rinas U.. 2002; Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. Biotechnol Bioeng80:313–319[CrossRef]
    [Google Scholar]
  11. Horne S. M., Kottom T. J., Nolan L. K., Young K. D.. 1997; Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen. Infect Immun65:806–810
    [Google Scholar]
  12. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S.. 1996; Regulation of pectinolysis in Erwinia chrysanthemi . Annu Rev Microbiol50:213–257[CrossRef]
    [Google Scholar]
  13. Justice S. S., Hunstad D. A., Harper J. R., Duguay A. R., Pinkner J. S., Bann J., Frieden C., Silhavy T. J., Hultgren S. J.. 2005; Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli . J Bacteriol187:7680–7686[CrossRef]
    [Google Scholar]
  14. Keseler I. M., Collado-Vides J., Gama-Castro S., Ingraham J., Paley S., Paulsen I. T., Peralta-Gil M., Karp P. D.. 2005; EcoCyc: a comprehensive database resource for Escherichia coli . Nucleic Acids Res33:334–337
    [Google Scholar]
  15. Kolmar H., Waller P. R., Sauer R. T.. 1996; The DegP and DegQ periplasmic endoproteases of Escherichia coli : specificity for cleavage sites and substrate conformation. J Bacteriol178:5925–5929
    [Google Scholar]
  16. Loubens I., Debarbieux L., Bohin A., Lacroix J.-M., Bohin J.-P.. 1993; Homology between a genetic locus ( mdoA ) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus ( hrpM ) controlling pathogenicity of Pseudomonas syringae . Mol Microbiol10:329–340[CrossRef]
    [Google Scholar]
  17. Minsavage G. V., Mudgett M. B., Stall R. E., Jones J. B.. 2004; Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host–parasite interactions. Mol Plant Microbe Interact17:152–161[CrossRef]
    [Google Scholar]
  18. Monnet V.. 2003; Bacterial oligopeptide-binding proteins. Cell Mol Life Sci60:2100–2114[CrossRef]
    [Google Scholar]
  19. Mouslim C., Groisman E. A.. 2003; Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol47:335–344[CrossRef]
    [Google Scholar]
  20. Page F., Altabe S., Hugouvieux-Cotte-Pattat N., Lacroix J.-M., Robert-Baudouy J., Bohin J.-P.. 2001; Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol183:3134–3141[CrossRef]
    [Google Scholar]
  21. Rabilloud T.. 1999; Silver staining of 2-D electrophoresis gels. Methods Mol Biol112:297–305
    [Google Scholar]
  22. Richarme G., Caldas D. T.. 1997; Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem272:15607–15612[CrossRef]
    [Google Scholar]
  23. Romeo T., Snoep J. L.. 2005; Glycolysis and flux control. In Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Neidhardt F. C., Bock A., Rudd K. E., Squires C. L., Curtiss, R. III, Kaper J. B., Nyström T.. Washington, DC: American Society for Microbiology;http://www.ecosal.org/ecosal/index.jsp
    [Google Scholar]
  24. Sanchez B., Anglade P., Baraige F., de los Reyes-Gavilan C. G., Margolles A., Zagorec M., Champomier-Vergès M.-C.. 2005; Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol187:5799–5808[CrossRef]
    [Google Scholar]
  25. Slekar K. H., Kosman D. J., Culotta V. C.. 1996; The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem271:28831–28836[CrossRef]
    [Google Scholar]
  26. Stevenson G., Adrianopoulos K., Hobbs M., Reeves P. R.. 1996; Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol178:4885–4893
    [Google Scholar]
  27. Stickland L. H.. 1951; The determination of small quantities of bacteria by means of the biuret reaction. J Gen Microbiol5:698–703[CrossRef]
    [Google Scholar]
  28. Winfield M. D., Latifi T., Groisman E. A.. 2005; Transcriptional regulation of the 4-amino-4-deoxy-l-arabinose biosynthetic genes in Yersinia pestis . J Biol Chem280:14765–14772[CrossRef]
    [Google Scholar]
  29. Yohannes E., Barnhart D. M., Slonczewski J. L.. 2004; pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K12. J Bacteriol186:192–199[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000372-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000372-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error