1887

Abstract

has an absolute growth requirement for a porphyrin source, which can be supplied by haem, haemoglobin, or the haemoglobin–haptoglobin, haem–haemopexin and haem–albumin complexes. Utilization of the haem–haemopexin complex is known to be mediated by the products of the gene cluster. It was demonstrated that , but not or , is also essential for the utilization of haem from haem–albumin complexes. Mutants of the type b strain E1a lacking genes in the gene cluster were examined for their ability to cause bacteraemia in rat models of invasive disease. In 5-day-old rats, mutants in the genes yielded a significantly reduced bacteraemic titre compared to the wild-type strain. In addition, 5-day-old rats infected with the mutant strains exhibited significantly improved survival rates compared to those infected with the wild-type strain. Mutations in the haemoglobin/haemoglobin–haptoglobin-binding protein genes (s), either alone or in combination with the mutations, had no impact on virulence in 5-day-old rats. In 30-day-old rats infected with either the mutants or the wild-type strains, there was no significant difference in the ability to establish bacteraemia although bacterial titres were lower in rats infected with the mutants than in those infected with the wild-type strain. These age-related differences in the impact of mutations in the gene cluster may be related to changes in levels of host haem-binding proteins during development of the rat.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000190-0
2007-01-01
2024-11-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/215.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000190-0&mimeType=html&fmt=ahah

References

  1. Balla J., Nath K. A., Balla G., Juckett M. B., Jacob H. S., Vercellotti G. M. 1995; Endothelial cell heme oxygenase and ferritin induction in rat lung by hemoglobin in vivo. Am J Physiol 268:L321–L327
    [Google Scholar]
  2. Cope L. D., Thomas S. E., Latimer J. L., Slaughter C. A., Muller-Eberhard U., Hansen E. J. 1994; The 100 kDa haem : haemopexin-binding protein of Haemophilus influenzae : structure and localization. Mol Microbiol 13:863–873 [CrossRef]
    [Google Scholar]
  3. Cope L. D., Yogev R., Muller-Eberhard U., Hansen E. J. 1995; A gene cluster involved in the utilization of both free heme and heme : hemopexin by Haemophilus influenzae type b. J Bacteriol 177:2644–2653
    [Google Scholar]
  4. Cope L. D., Thomas S. E., Hrkal Z., Hansen E. J. 1998; Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae . Infect Immun 66:4511–4516
    [Google Scholar]
  5. Cope L. D., Hrkal Z., Hansen E. J. 2000; Detection of phase variation in expression of proteins involved in hemoglobin and hemoglobin-haptoglobin binding by nontypeable Haemophilus influenzae . Infect Immun 68:4092–4101 [CrossRef]
    [Google Scholar]
  6. Cope L. D., Love R. P., Guinn S. E., Gilep A., Usanov S., Estabrook R. W., Hrkal Z., Hansen E. J. 2001; Involvement of HxuC outer membrane protein in utilization of hemoglobin by Haemophilus influenzae . Infect Immun 69:2353–2363 [CrossRef]
    [Google Scholar]
  7. Cripps A. W., Foxwell R., Kyd J. 2002; The challenges for the development of vaccines against Haemophilus influenzae and Neisseria meningitidis . Curr Opin Immunol 14:553–557 [CrossRef]
    [Google Scholar]
  8. Evans R. W., Crawley J. B., Joannou C. L., Sharma N. D. 1999; Iron proteins. In Iron and Infection: Molecular, Physiological and Clinical Aspects pp 27–86 Edited by Bullen J. J., Griffiths E. New York, NY: Wiley;
    [Google Scholar]
  9. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J., Dougherty B. A. other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  10. Genco C. A., Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11 [CrossRef]
    [Google Scholar]
  11. Griffiths E. 1999; Iron in biological systems. In Iron and Infection: Molecular, Physiological and Clinical Aspects pp 1–26 Edited by Bullen J. J., Griffiths E. New York, NY: Wiley;
    [Google Scholar]
  12. Gromkova R. C., Rowji P. B., Koornhof H. J. 1989; Induction of competence in nonencapsulated and encapsulated strains of Haemophilus influenzae . Curr Microbiol 19:241–245 [CrossRef]
    [Google Scholar]
  13. Hanson M. S., Pelzel S. E., Latimer J., Muller-Eberhard U., Hansen E. J. 1992; Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin. Proc Natl Acad Sci U S A 89:1973–1977 [CrossRef]
    [Google Scholar]
  14. Harrison A., Dyer D. W., Gillaspy A., Ray W. C., Mungur R., Carson M. B., Zhong H., Gipson J., Gipson M. other authors 2005; Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae : comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 187:4627–4636 [CrossRef]
    [Google Scholar]
  15. Jett B. D., Hatter K. L., Huycke M. M., Gilmore M. S. 1997; Simplified agar plate method for quantifying viable bacteria. Biotechniques 23:648–650
    [Google Scholar]
  16. Kanakoudi F., Drossou V., Tzimouli V., Diamanti E., Konstantinidis T., Germenis A., Kremenopoulos G. 1995; Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem 41:605–608
    [Google Scholar]
  17. Koskelo P., Muller-Eberhard U. 1977; Interaction of porphyrins with proteins. Semin Hematol 14:221–226
    [Google Scholar]
  18. Loeb M. R. 1995; Ferrochelatase activity and protoporphyrin IX utilization in Haemophilus influenzae . J Bacteriol 177:3613–3615
    [Google Scholar]
  19. Moldenhauer H., Rose H. 1970; Entwicklung der Serumeiweisse von Ratten im ersten Monat nach der Geburt. Acta Biol Med Ger 25:469–472
    [Google Scholar]
  20. Morgan W. T., Liem H. H., Sutor R. P., Muller-Ebergard U. 1976; Transfer of heme from heme-albumin to hemopexin. Biochim Biophys Acta 444:435–445 [CrossRef]
    [Google Scholar]
  21. Morton D. J., Stull T. L. 2004; Haemophilus. In Iron Transport in Bacteria pp 273–292 Edited by Crosa J. H., Mey A. R., Payne S. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Morton D. J., Whitby P. W., Jin H., Ren Z., Stull T. L. 1999; Effect of multiple mutations in the hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA, HgpB, and HgpC of Haemophilus influenzae type b. Infect Immun 67:2729–2739
    [Google Scholar]
  23. Morton D. J., Bakaletz L. O., Jurcisek J. A., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2004a; Reduced severity of middle ear infection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin-haptoglobin binding proteins (Hgp) in a chinchilla model of otitis media. Microb Pathog 36:25–33 [CrossRef]
    [Google Scholar]
  24. Morton D. J., Smith A., Madore L. L., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2004b; Identification of a haem utilization protein (Hup) in Haemophilus influenzae . Microbiology 150:3923–3933 [CrossRef]
    [Google Scholar]
  25. Morton D. J., Madore L. L., Smith A., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2005; The heme-binding lipoprotein (HbpA) of Haemophilus influenzae : role in heme utilization. FEMS Microbiol Lett 253:193–199 [CrossRef]
    [Google Scholar]
  26. Morton D. J., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2006a; Differential utilization by Haemophilus influenzae of hemoglobin complexed to the three human haptoglobin phenotypes. FEMS Immunol Med Microbiol 46:426–432 [CrossRef]
    [Google Scholar]
  27. Morton D. J., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2006b; Utilization of myoglobin as a heme source by Haemophilus influenzae requires binding of myoglobin to haptoglobin. FEMS Microbiol Lett 258:235–240 [CrossRef]
    [Google Scholar]
  28. Moxon E. R., Rappuoli R. 2002; Bacterial pathogen genomics and vaccines. Br Med Bull 62:45–58 [CrossRef]
    [Google Scholar]
  29. Panek H., O'Brian M. R. 2002; A whole genome view of prokaryotic haem biosynthesis. Microbiology 148:2273–2282
    [Google Scholar]
  30. Peters T. 1996 All About Albumin Biochemistry, Genetics, and Medical Applications London: Academic Press;
    [Google Scholar]
  31. Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. 1988; Iron acquisition by Haemophilus influenzae . Infect Immun 56:721–725
    [Google Scholar]
  32. Postle K. 1990; TonB and the gram-negative dilemma. Mol Microbiol 4:2019–2025 [CrossRef]
    [Google Scholar]
  33. Projan S. J., Monod M., Narayanan C. S., Dubnau D. 1987; Replication properties of pIM13, a naturally occurring plasmid found in Bacillus subtilis , and of its close relative pE5, a plasmid native to Staphylococcus aureus . J Bacteriol 169:5131–5139
    [Google Scholar]
  34. Ren Z., Jin H., Whitby P. W., Morton D. J., Stull T. L. 1999; Role of CCAA nucleotide repeats in regulation of hemoglobin and hemoglobin-haptoglobin binding protein genes of Haemophilus influenzae . J Bacteriol 181:5865–5870
    [Google Scholar]
  35. Schlor S., Herbert M., Rodenburg M., Blass J., Reidl J. 2000; Characterization of ferrochelatase ( hemH ) mutations in Haemophilus influenzae . Infect Immun 68:3007–3009 [CrossRef]
    [Google Scholar]
  36. Seale T. W., Morton D. J., Whitby P. W., Wolf R., Kosanke S. D., VanWagoner T. M., Stull T. L. 2006; Complex role of hemoglobin and hemoglobin-haptoglobin binding proteins in Haemophilus influenzae virulence in the infant rat model of invasive infection. Infect Immun 74:6213–6225 [CrossRef]
    [Google Scholar]
  37. Smith A. 1985; Intracellular distribution of haem after uptake by different receptors. Haem-haemopexin and haem-asialo-haemopexin. Biochem J 231:663–669
    [Google Scholar]
  38. Smith A., Morgan W. T. 1984; Hemopexin-mediated heme uptake by liver. Characterization of the interaction of heme-hemopexin with isolated rabbit liver plasma membranes. J Biol Chem 259:12049–12053
    [Google Scholar]
  39. Smith A. L., Smith D. H., Averill D. R., Marino J., Moxon E. R. 1973; Production of Haemophilus influenzae b meningitis in infant rats by intraperitoneal inoculation. Infect Immun 8:278–290
    [Google Scholar]
  40. Stull T. L. 1987; Protein sources of heme for Haemophilus influenzae . Infect Immun 55:148–153
    [Google Scholar]
  41. Stull T. L., Mendelman P. M., Haas J. E., Schoenborn M. A., Mack K. D., Smith A. L. 1984; Characterization of Haemophilus influenzae type b fimbriae. Infect Immun 46:787–796
    [Google Scholar]
  42. Tartof K. D., Hobbs C. A. 1988; New cloning vectors and techniques for easy and rapid restriction mapping. Gene 67:169–182 [CrossRef]
    [Google Scholar]
  43. Turk D. C. 1984; The pathogenicity of Haemophilus influenzae . J Med Microbiol 18:1–16 [CrossRef]
    [Google Scholar]
  44. Ward C. G., Bullen J. J. 1999; Clinical and physiological aspects. In Iron and Infection: Molecular, Physiological and Clinical Aspects pp 369–450 Edited by Bullen J. J., Griffiths E. New York: Wiley;
    [Google Scholar]
  45. Whitby P. W., Sim K. E., Morton D. J., Patel J. A., Stull T. L. 1997; Transcription of genes encoding iron and heme acquisition proteins of Haemophilus influenzae during acute otitis media. Infect Immun 65:4696–4700
    [Google Scholar]
  46. Whitby P. W., VanWagoner T. M., Seale T. W., Morton D. J., Stull T. L. 2006; Transcriptional profile of Haemophilus influenzae : effects of iron and heme. J Bacteriol 188:5640–5645 [CrossRef]
    [Google Scholar]
  47. White D. C., Granick S. 1963; Hemin biosynthesis in Haemophilus . J Bacteriol 85:842–850
    [Google Scholar]
  48. Wong J. C. Y., Holland J., Parsons T., Smith A., Williams P. 1994; Identification and characterization of an iron-regulated hemopexin receptor in Haemophilus influenzae type b. Infect Immun 62:48–59
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/000190-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000190-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error