1887

Abstract

The cholera toxin (CT) is a critical determinant of the virulence of epidemic strains. The operon encoding CT is part of the genome of a filamentous bacteriophage CTXΦ, which may integrate as a single copy or as multiple copies in the genome of . The CTXΦ genome is composed of RS2 (2.4 kb) and core (4.5 kb) regions. In the present study extensive genetic mapping analyses indicated that two copies of tandemly arrayed CTX prophages are integrated in the small chromosome of an environmental strain, VCE232, belonging to serogroup O4. Further mapping revealed that the integration of prophages has occurred in the same genetic locus of the small chromosome of VCE232 as that of O1 biotype El Tor strains. Interestingly, a new type of RS2-like element 3.5 kb in size was found in the CTX prophage genome in the small chromosome of VCE232. Cloning followed by sequencing of the new RS2-like element of VCE232 revealed the presence of three ORFs, which probably encode highly divergent types of phage regulatory proteins. Furthermore, the strain VCE232 also harbours two copies of a tandemly arranged CTX prophage devoid of the genes, called pre-CTX prophage, in its large chromosome. The presence of multiple copies of diverse CTX prophages in both the chromosomes of VCE232 suggests that toxigenic environmental non-O1, non-O139 strains could play a role in the emergence of new epidemic clones.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000117-0
2006-12-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3633.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000117-0&mimeType=html&fmt=ahah

References

  1. Aggarwal, A. K., Rodgers, D. W., Drottar, M., Ptashne, M. & Harrison, S. C. ( 1988; ). Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242, 899–907.[CrossRef]
    [Google Scholar]
  2. Bhadra, R. K., Roychoudhury, S., Banerjee, R. K., Kar, S., Majumdar, R., Sengupta, S., Chatterjee, S., Khetawat, G. & Das, J. ( 1995; ). Cholera toxin (CTX) genetic element in Vibrio cholerae O139. Microbiology 141, 1977–1983.[CrossRef]
    [Google Scholar]
  3. Bhattacharya, T., Chatterjee, S., Maiti, D., Bhadra, R. K., Takeda, Y., Nair, G. B. & Nandy, R. K. ( 2006; ). Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol 8, 526–534.[CrossRef]
    [Google Scholar]
  4. Bik, E. M., Bunschoten, A. E., Gouw, R. D. & Mooi, F. R. ( 1995; ). Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14, 209–216.
    [Google Scholar]
  5. Boyd, E. F., Heilpern, A. J. & Waldor, M. K. ( 2000; ). Molecular analyses of a putative CTXΦ precursor and evidence for independent acquisition of distinct CTXΦs by toxigenic Vibrio cholerae. J Bacteriol 182, 5530–5538.[CrossRef]
    [Google Scholar]
  6. Dalsgaard, A., Serichantalergs, O., Forslund, A., Lin, W., Mekalanos, J., Mintz, E., Shimada, T. & Wells, J. G. ( 2001; ). Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol 39, 4086–4092.[CrossRef]
    [Google Scholar]
  7. Davis, B. M. & Waldor, M. K. ( 2000; ). CTXФ contains a hybrid genome derived from tandemly integrated elements. Proc Natl Acad Sci U S A 97, 8572–8577.[CrossRef]
    [Google Scholar]
  8. Davis, B. M., Kimsey, H. H., Chang, W. & Waldor, M. K. ( 1999; ). The Vibrio cholerae O139 Calcutta bacteriophage CTXФ is infectious and encodes a novel repressor. J Bacteriol 181, 6779–6787.
    [Google Scholar]
  9. Davis, B. M., Moyer, K. E., Boyd, E. F. & Waldor, M. K. ( 2000; ). CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J Bacteriol 182, 6992–6998.[CrossRef]
    [Google Scholar]
  10. Davis, B. M., Kimsey, H. H., Kane, A. V. & Waldor, M. K. ( 2002; ). A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J 21, 4240–4249.[CrossRef]
    [Google Scholar]
  11. Heidelberg, J. F., Eisen, J. A., Nelson, W. C. & 29 other authors ( 2000; ). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef]
    [Google Scholar]
  12. Heilpern, A. J. & Waldor, M. K. ( 2003; ). pIIICTX, a predicted CTXФ minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol 185, 1037–1044.[CrossRef]
    [Google Scholar]
  13. Ikema, M. & Honma, Y. ( 1998; ). A novel filamentous phage, fs-2, of Vibrio cholerae O139. Microbiology 144, 1901–1906.[CrossRef]
    [Google Scholar]
  14. Jiang, S., Chu, W. & Fu, W. ( 2003; ). Prevalence of cholera toxin genes (ctxA and zot) among non-O1/O139 Vibrio cholerae strains from Newport Bay, California. Appl Environ Microbiol 69, 7541–7544.[CrossRef]
    [Google Scholar]
  15. Kaper, J. B., Morris, J. G., Jr & Levine, M. M. ( 1995; ). Cholera. Clin Microbiol Rev 8, 48–86.
    [Google Scholar]
  16. Kimsey, H. H. & Waldor, M. K. ( 1998; ). CTXФ immunity: application in the development of cholera vaccines. Proc Natl Acad Sci U S A 95, 7035–7039.[CrossRef]
    [Google Scholar]
  17. Kimsey, H. H. & Waldor, M. K. ( 2004; ). The CTXФ repressor RstR binds DNA cooperatively to form tetrameric repressor–operator complexes. J Biol Chem 279, 2640–2647.[CrossRef]
    [Google Scholar]
  18. Li, M., Shimada, T., Morris, J. G., Jr, Sulakvelidze, A. & Sozhamannan, S. ( 2002; ). Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun 70, 2441–2453.[CrossRef]
    [Google Scholar]
  19. Li, M., Kotetishvili, M., Chen, Y. & Sozhamannan, S. ( 2003; ). Comparative genomic analyses of the Vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vibrio cholerae. Appl Environ Microbiol 69, 1728–1738.[CrossRef]
    [Google Scholar]
  20. Lin, W., Fullner, K. J., Clayton, R., Sexton, J. A., Rogers, M. B., Calia, K. E., Calderwood, S. B., Fraser, C. & Mekalanos, J. J. ( 1999; ). Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96, 1071–1076.[CrossRef]
    [Google Scholar]
  21. Mekalanos, J. J. ( 1983; ). Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35, 253–263.[CrossRef]
    [Google Scholar]
  22. Mukhopadhyay, A. K., Chakraborty, S., Takeda, Y., Nair, G. B. & Berg, D. E. ( 2001; ). Characterization of VPI pathogenicity island and CTXФ prophage in environmental strains of Vibrio cholerae. J Bacteriol 183, 4737–4746.[CrossRef]
    [Google Scholar]
  23. Nair, G. B., Sarkar, B. L., De, S. P., Chakraborti, M. K., Bhadra, R. K. & Pal, S. C. ( 1988; ). Ecology of Vibrio cholerae in the fresh water environs in Calcutta, India. Microb Ecol 15, 203–215.[CrossRef]
    [Google Scholar]
  24. Nandi, S., Maiti, D., Saha, A. & Bhadra, R. K. ( 2003; ). Genesis of variants of Vibrio cholerae O1 biotype El Tor: role of CTXΦ array and its position in the genome. Microbiology 149, 89–97.[CrossRef]
    [Google Scholar]
  25. Pearson, G. D., Woods, A., Chiang, S. L. & Mekalanos, J. J. ( 1993; ). CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci U S A 90, 3750–3754.[CrossRef]
    [Google Scholar]
  26. Ramamurthy, T., Garg, S., Sharma, R. & 8 other authors ( 1993; ). Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341, 703–704.
    [Google Scholar]
  27. Rubin, E. J., Lin, W., Mekalanos, J. J. & Waldor, M. K. ( 1998; ). Replication and integration of Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 28, 1247–1254.[CrossRef]
    [Google Scholar]
  28. Saha, A., Haralalka, S. & Bhadra, R. K. ( 2004; ). A naturally occurring point mutation in the 13-mer R repeat affects the oriC function of the large chromosome of Vibrio cholerae O1 classical biotype. Arch Microbiol 182, 421–427.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Trucksis, M., Michalski, J., Deng, Y. K. & Kaper, J. B. ( 1998; ). The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci U S A 95, 14464–14469.[CrossRef]
    [Google Scholar]
  31. Waldor, M. K. & Mekalanos, J. J. ( 1994; ). Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis 170, 278–283.[CrossRef]
    [Google Scholar]
  32. Waldor, M. K. & Mekalanos, J. J. ( 1996; ). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914.[CrossRef]
    [Google Scholar]
  33. Waldor, M. K., Rubin, E. J., Pearson, G. D., Kimsey, H. & Mekalanos, J. J. ( 1997; ). Regulation, replication, and integration functions of the Vibrio cholerae CTXФ are encoded by region RS2. Mol Microbiol 24, 917–926.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000117-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000117-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error