1887

Abstract

In this study, the regulatory mechanism of the (utilization of -ascorbic acid) operon, putatively responsible for transport and utilization of ascorbic acid in strain D39, is studied. β-Galactosidase assay data demonstrate that expression of the operon is increased in the presence of ascorbic acid as compared with the effects of other sugar sources including glucose. The operon consists of nine genes, including a transcriptional regulator UlaR, and is transcribed as a single transcriptional unit. We demonstrate the role of the transcriptional regulator UlaR as a transcriptional activator of the operon in the presence of ascorbic acid and show that activation of the operon genes by UlaR is CcpA-independent. Furthermore, we predict a 16 bp regulatory site (5′-AACAGTCCGCTGTGTA-3′) for UlaR in the promoter region of . Deletion of the half or full UlaR regulatory site in P confirmed that the UlaR regulatory site present in P is functional.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083899-0
2015-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/41.html?itemId=/content/journal/micro/10.1099/mic.0.083899-0&mimeType=html&fmt=ahah

References

  1. Afzal M. , Shafeeq S. , Kuipers O. P. . ( 2014; ). LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae . . Appl Environ Microbiol 80:, 5349–5358. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bailey T. L. , Elkan C. . ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. ISMB Int. Conf. Intell. Syst. Mol. Biol. . 2:, 28–36.
    [Google Scholar]
  3. Bidossi A. , Mulas L. , Decorosi F. , Colomba L. , Ricci S. , Pozzi G. , Deutscher J. , Viti C. , Oggioni M. R. . ( 2012; ). A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae . . PLoS ONE 7:, e33320. [CrossRef] [PubMed]
    [Google Scholar]
  4. Campos E. , Aguilar J. , Baldoma L. , Badia J. . ( 2002; ). The gene yjfQ encodes the repressor of the yjfR-X regulon (ula), which is involved in L-ascorbate metabolism in Escherichia coli . . J Bacteriol 184:, 6065–6068. [CrossRef] [PubMed]
    [Google Scholar]
  5. Campos E. , Baldoma L. , Aguilar J. , Badia J. . ( 2004; ). Regulation of expression of the divergent ulaG and ulaABCDEF operons involved in L-Ascorbate dissimilation in Escherichia coli . . J Bacteriol 186:, 1720–1728. [CrossRef] [PubMed]
    [Google Scholar]
  6. Campos E. , Montella C. , Garces F. , Baldoma L. , Aguilar J. , Badia J. . ( 2007; ). Aerobic l-ascorbate metabolism and associated oxidative stress in Escherichia coli . . Microbiology 153:, 3399–3408. [CrossRef] [PubMed]
    [Google Scholar]
  7. Campos E. , de la Riva L. , Garces F. , Giménez R. , Aguilar J. , Baldoma L. , Badia J. . ( 2008; ). The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of l-ascorbate in Klebsiella pneumoniae strain 13882 with l-ascorbate-6-phosphate as the inducer. . J Bacteriol 190:, 6615–6624. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carvalho S. M. , Kloosterman T. G. , Kuipers O. P. , Neves A. R. . ( 2011; ). CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae D39. . PLos One 6, e26707.[CrossRef]
    [Google Scholar]
  9. Fujita Y. . ( 2009; ). Carbon catabolite control of the metabolic network in Bacillus subtilis . . Biosci Biotechnol Biochem 73:, 245–259. [CrossRef] [PubMed]
    [Google Scholar]
  10. Giammarinaro P. , Paton J. C. . ( 2002; ). Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae . . Infect Immun 70:, 5454–5461. [CrossRef] [PubMed]
    [Google Scholar]
  11. Halfmann A. , Hakenbeck R. , Brückner R. . ( 2007; ). A new integrative reporter plasmid for Streptococcus pneumoniae . . FEMS Microbiol Lett 268:, 217–224. [CrossRef] [PubMed]
    [Google Scholar]
  12. Heravi K. M. , Wenzel M. , Altenbuchner J. . ( 2011; ). Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. . Microb Cell Fact 10:, 83. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ibañez E. , Campos E. , Baldoma L. , Aguilar J. , Badia J. . ( 2000; ). Regulation of expression of the yiaKLMNOPQRS operon for carbohydrate utilization in Escherichia coli: involvement of the main transcriptional factors. . J Bacteriol 182:, 4617–4624. [CrossRef] [PubMed]
    [Google Scholar]
  14. Israelsen H. , Madsen S. M. , Vrang A. , Hansen E. B. , Johansen E. . ( 1995; ). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. . Appl Environ Microbiol 61:, 2540–2547.[PubMed]
    [Google Scholar]
  15. Iyer R. , Camilli A. . ( 2007; ). Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae . . Mol Microbiol 66:, 1–13. [CrossRef] [PubMed]
    [Google Scholar]
  16. Iyer R. , Baliga N. S. , Camilli A. . ( 2005; ). Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae . . J Bacteriol 187:, 8340–8349. [CrossRef] [PubMed]
    [Google Scholar]
  17. Joyet P. , Derkaoui M. , Poncet S. , Deutscher J. . ( 2010; ). Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR. . Mol Microbiol 76:, 1279–1294. [CrossRef] [PubMed]
    [Google Scholar]
  18. Joyet P. , Bouraoui H. , Aké F. M. D. , Derkaoui M. , Zébré A. C. , Cao T. N. , Ventroux M. , Nessler S. , Noirot-Gros M.-F. . & other authors ( 2013; ). Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system. . Biochim Biophys Acta 1834:, 1415–1424. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kloosterman T. G. , Bijlsma J. J. E. , Kok J. , Kuipers O. P. . ( 2006; ). To have neighbour’s fare: extending the molecular toolbox for Streptococcus pneumoniae . . Microbiology 152:, 351–359. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lanie J. A. , Ng W. L. , Kazmierczak K. M. , Andrzejewski T. M. , Davidsen T. M. , Wayne K. J. , Tettelin H. , Glass J. I. , Winkler M. E. . ( 2007; ). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. . J Bacteriol 189:, 38–51. [CrossRef] [PubMed]
    [Google Scholar]
  21. Leenhouts K. , Venema G. , Kok J. . ( 1998; ). A lactococcal pWV01 based integration toolbox for bacteria. . Methods Cell Sci 20:, 35–50. [CrossRef]
    [Google Scholar]
  22. Mehmeti I. , Solheim M. , Nes I. F. , Holo H. . ( 2013; ). Enterococcus faecalis grows on ascorbic acid. . Appl Environ Microbiol 79:, 4756–4758. [CrossRef] [PubMed]
    [Google Scholar]
  23. Nieto C. , Espinosa M. , Puyet A. . ( 1997; ). The maltose/maltodextrin regulon of Streptococcus pneumoniae. Differential promoter regulation by the transcriptional repressor MalR. . J Biol Chem 272:, 30860–30865. [CrossRef] [PubMed]
    [Google Scholar]
  24. Novichkov P. S. , Laikova O. N. , Novichkova E. S. , Gelfand M. S. , Arkin A. P. , Dubchak I. , Rodionov D. A. . ( 2010; ). RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. . Nucleic Acids Res 38: (Database issue), D111–D118. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rosenow C. , Maniar M. , Trias J. . ( 1999; ). Regulation of the α-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system. . Genome Res 9:, 1189–1197. [CrossRef] [PubMed]
    [Google Scholar]
  26. Shafeeq S. , Yesilkaya H. , Kloosterman T. G. , Narayanan G. , Wandel M. , Andrew P. W. , Kuipers O. P. , Morrissey J. A. . ( 2011a; ). The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae . . Mol Microbiol 81:, 1255–1270. [CrossRef] [PubMed]
    [Google Scholar]
  27. Shafeeq S. , Kloosterman T. G. , Kuipers O. P. . ( 2011b; ). Transcriptional response of Streptococcus pneumoniae to Zn2+ limitation and the repressor/activator function of AdcR. . Metallomics 3:, 609–618. [CrossRef] [PubMed]
    [Google Scholar]
  28. Shafeeq S. , Kloosterman T. G. , Kuipers O. P. . ( 2011c; ). CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae . . Microbiology 157:, 2854–2861. [CrossRef] [PubMed]
    [Google Scholar]
  29. Shafeeq S. , Kuipers O. P. , Kloosterman T. G. . ( 2013; ). Cellobiose-mediated gene expression in Streptococcus pneumoniae: a repressor function of the novel GntR-type regulator BguR. . PLoS ONE 8:, e57586. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stülke J. , Hillen W. . ( 1998; ). Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. . Naturwissenschaften 85:, 583–592. [CrossRef] [PubMed]
    [Google Scholar]
  31. Terzaghi B. E. , Sandine W. E. . ( 1975; ). Improved medium for lactic streptococci and their bacteriophages. . Appl Microbiol 29:, 807–813.[PubMed]
    [Google Scholar]
  32. Titgemeyer F. , Hillen W. . ( 2002; ). Global control of sugar metabolism: a gram-positive solution. . Antonie van Leeuwenhoek 82:, 59–71. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tobisch S. , Stülke J. , Hecker M. . ( 1999; ). Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. . J Bacteriol 181:, 4995–5003.[PubMed]
    [Google Scholar]
  34. Yew W. S. , Gerlt J. A. . ( 2002; ). Utilization of l-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. . J Bacteriol 184:, 302–306. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zeng L. , Burne R. A. . ( 2009; ). Transcriptional regulation of the cellobiose operon of Streptococcus mutans . . J Bacteriol 191:, 2153–2162. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zhang Z. , Aboulwafa M. , Smith M. H. , Saier M. H. Jr . ( 2003; ). The ascorbate transporter of Escherichia coli . . J Bacteriol 185:, 2243–2250. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083899-0
Loading
/content/journal/micro/10.1099/mic.0.083899-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error